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Abstract 
The measurement and analysis of parasitic angle and translation movements of a high precision rotary 
table are presented. The table, which is used in the calibration of high precision theodolites, is capable 
of discriminating angular movements on its main rotation axis in the order of 0.05 arc-seconds. 
However, to achieve maximum performance, parasitic movements on the other 5 degrees of freedom of 
the table must be measured. This paper will discuss the simultaneous determination of the three 
translation and two tilt motions of the table using high precision capacitive probes. These probes have a 
range of 0.25 mm and 0.5 mm and resolution inferior to 50 nm. Both the measurement process and 
results are presented. 

1. Introduction 
For the ESRF accelerators and beamlines to work correctly, alignment is of critical importance. 
Alignment tolerances are typically less than one millimetre and often in the order of several 
micrometers. The uncertainties in the positional determination of points typically attained today at the 
ESRF are: 

• Height determination  30 µm  
• Planimetric determination 150 µm 
• Tilt determination  15 µrad 

The planimetric point determination is the limiting factor in the ESRF machine alignment. The semi-
major axis of the absolute error ellipse, a measure of spatial quality in point determination, is aligned in 
the direction perpendicular to the travel of the electron beam. This radial error is in the direction most 
sensitive to alignment errors. It is also the direction most sensitive to angle measurements[1].  

At the ESRF, all precision survey work is done with the LEICA TDA5005 motorized total station 
equipped with Automatic Target Recognition (ATR). For an improvement in the survey results there 
must be an improvement in either the distance or the angle measuring precision. At the limit of its 
distance measuring capacity, improvement can only be made by bettering the angle measuring 
uncertainty of the TDA5005. This can only be achieved by calibration [2]. 

2. Angle Calibration and the Theodolite Measuring Machine (TMM)  

1.1. Angle Calibration Method 
To improve angle measuring precision, the TDA5005 theodolite angles must be calibrated. Calibration 
is the act of checking or adjusting by comparison with a standard or reference the uncertainty of a 
measuring instrument. By definition, a standard or reference has a smaller uncertainty than the 
measuring instrument. The manufacturer’s nominal quoted uncertainty of the TDA5005 angle encoder 
is 0.5 arc seconds.  

The ESRF ALGE group has a very precise rotation stage coined TMM for Theodolite Measuring 
Machine (Figure 1). This instrument, in combination with several other instruments and techniques, is 
employed for the calibration of theodolite angles. 



 
Figure 1. The ESRF ALGE Theodolite Measuring Machine (TMM). 

The TMM incorporates two HEIDENHAIN RON 905 angle encoders mounted in juxtaposition to each 
other. One RON 905 is fixed to the main support assembly and does not move. The second RON 905 is 
fixed to the main plateau and rotates with it. The two RON 905 encoders are linked through a precision 
alignment shaft assembly. The shaft and encoders are rotated continuously by a variable speed precision 
rotation stage. The two RON 905 encoder positions are read out simultaneously and continuously. This 
configuration permits the elimination of residual encoder errors [3, 4]. 

To calibrate the Theodolite on the TMM; a target located at approximately 6m is sighted; the TMM is 
turned through an angle α ; the theodolite is rotated back through the same angle; the target is re-
observed; and the results compared. One of the main advantages of this method is that any angle 
displacement over 360° can be investigated.  

1.2. Elimination of Residual Errors Using the Linked Encoders Configuration 
Most systematic errors are eliminated in the RON 905 by employing four read-heads. Nevertheless, 
residual errors predominantly linked to the encoder interpolation system, and with incertitude of 0.36 
arc seconds remain. These errors will oscillate about the true RON 905 encoder readings. This is 
illustrated in Figure 2. The pattern is constant and repeats itself over 360°. These errors can be largely 
eliminated using two angle encoders mounted in juxtaposition to each other  [3, 4]. 

The oscillations (Figure 2) about the true angles for two RON 905 encoders for a displacement 
angleα are given by 1A and 2A in equation (1). In this equation, readθ refers to the RON 905 encoder 
read value and trueθ is the true (immeasurable) angle. The subscripts mobile  and fixed  refer to the 
mobile RON 905 linked to the main plateau and the fixed RON 905 respectively. The subscript 
ref refers to the position of the encoder at an arbitrary origin angle position. It can be considered a 
constant. 
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Figure 2. As the RON 905 encoder rotates about its axis, residual errors cause the angle encoder reading to oscillate 
about the true angle (left hand graph). These residual errors can be eliminated by employing two linked angle encoders 
and integrating the difference between their read values over a rotation of 2 radians (right hand graph). 

In (2) the immeasurable true angles trueθ are eliminated by subtracting 1A  from 2A  leaving only values 
which are read. Dropping the read subscript and rearranging the equation leaves a term aα representing 
the integral of the difference between the two RON 905 angle encoders over one full rotation of 2 π 
radians at a given angle displacement α ; and a constant refC representing the integral of the difference 
between the two RON 905 angle encoders over one full rotation of 2 π radians at an arbitrary origin ((2)
and Figure 2). 
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1.3. Integral Evaluation 
The problem remains of how to evaluate the integral in (2). Several possibilities exist. The first is to 
perform a numerical integration using the trapezoidal or some other common rule. A second possibility 
is to perform a curve fitting procedure on the data by approaching it as a smooth function and 
calculating the integral analytically. 



Functional data analysis approaches discrete data with the principle that it can be represented by a 
smooth function which has been polluted by noise or uncertainty in the measurement process. These 
smooth functional observations are represented by basis functions. Polynomials, splines, wavelets and 
Fourier series are examples of basis functions [5].   

If it is reasonably assumed that the curves read trueθ θ− are smooth, continuous and repeat over the 
interval 0 to 2 π radians; then a natural candidate for a basis function is a Fourier series. The problem 
with using two Fourier series to evaluate the integral described in equation (1) is the quantity of data 
and the form of the signal. There is a potential for several million acquisitions per second. This in and 
of itself requires considerable computing power to process. The form of the curve is very complex. At 
its base are the 36000 sinusoidal oscillations associated with the read heads. A real example is shown in 
Figure 3.  

 
Figure 3. Real RON905 differences over a movement of 4.74 arc seconds. The top graph shows the difference between 
the RON 905 values over 2.5 million readings. The middle graphs show the RON905 differences over 1 turn (360000) 
values each while the bottom graph zooms in over reading numbers 10000 to 10500 after the movement. 

Assuming that we can represent the two curves each by a Fourier series basis function, the integral of 
their difference, will simply be the terms ( ) ( )0 02 1curve curve

a a−  or the mean values of the two curves. The 
integral of the sum of the cosine and sine terms is zero. 

The ease with which the mean value is calculated makes it the best candidate for the calculation of the 
integral described in (1) and (2). Thus in the adopted method (equation (3)), n and m represent the 
number of samples taken between 0 and 2 π radians for each of the difference curves at the 
displacement angle α and the origin reference respectively. 
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In principle, the values for fixedθ and fixedx  in equations(1), (2) and (3) do not change. However, at each 
turn of the encoders, the position i is slightly different and as a result the values for fixedθ and fixedx  will 
also vary slightly. The important point is that if the displacement angle α does not change the value for 
A in equations (2)and (3) remain constant.   

1.4. Measurement Results 
Angles measured by the TMM were compared to those measured by a precise autocollimator 
(ELCOMAT 3000) and to capacitive captor measurements. For very small angles (±30 arc seconds) the 
standard deviation in the difference in angles measured by the three different instruments was better 
than 0.03 arc seconds for a large number (2700) of angle displacements. 

3. Multi-Probe Form/Spindle Error Separation 
Recall the angle calibration method consists of sighting a target with the theodolite, turning the TMM 
through an angle, bringing the theodolite back through the same angle, re-sighting the target and 
comparing the results.  For this to work the main theodolite and TMM axes must be coincident and all 
rotations of the plateau and theodolite must be identical in magnitude and opposite in sign.  Clearly for 
very high precision work this is not the case. 

For rotational movement about a principal axis as with the TMM, there will be coupled unwanted or 
parasitic motions associated with its other five other degrees of freedom. These error motions are: the 
translations along the x , y and z  axes ( ( )sx θ , ( )sy θ and ( )sz θ ); and the tilts (wobble) about the x and 
y axes ( ( )xw θ and ( )yw θ ). The magnitude of these unwanted movements is dependent upon the quality 

of the motion stage. For the highest precision work, it is clear that the errors caused by these parasitic 
movements must be eliminated, minimized or compensated for.  

Parasitic movements are typically measured by a probe to an artefact fixed to, or actually part of the 
object being moved. This probe must be independent of the object in motion. The artefact most often 
used is a high precision sphere. In this work the cylinder shaped TMM plateau is used. Regardless of its 
shape, the artefact will not be a perfect sphere or cylinder. The deviations from the sphericity or 
cylindricity of the artefact are referred to as form errors. In the measurement process, the parasitic 
spindle error motions measured by the probe are confounded with the artefact form errors. These 
motions must be separated from the artefact form errors. 

Over the years several techniques have been developed for the accurate measure of part features. A 
review of many of these techniques is given in [6]. In the context of the TMM, there is essentially only 
one technique that can be used separate parasitic motion from form error. This is the multi-probe 
technique. A very clear review of this and other methods is found in [7]. These techniques are also 
discussed extensively in [8-14]. 

1.5. Radial error separation 
Much of the initial work concerning the multi-probe technique is outlined in [8]. This is a model based 
method [6]. Model based techniques make assumptions about the form of the underlying errors. In 
particular, they assume the underlying error can be represented by a Fourier series.  

The underlying principle of the multi-probe technique [7, 8, 11, 12] (≥ three probes) is the elimination 
of spindle motion from the observations ( ) ( ) ( )1 2 3, ,m m mθ θ θ Land the subsequent recombination of 
the form error ( )f θ by means of a Fourier series. 

The general and experimental setup for the multi-probe technique is shown in Figure 4. The probes 
themselves are positioned at angles 2 3,ϕ ϕ L  with respect to probe no. 1 which is aligned along the 
x axis (i.e. 1 0ϕ = ). Measurements from the different probes ( ) ( ) ( )1 2 3, ,m m mθ θ θ L  are made 
simultaneously. 
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Figure 4 Setup for the multi-probe method of motion/form error separation. Several probes are arranged around the 
artefact at angles 2 3,ϕ ϕ L . We take probe no. 1 to be aligned along the x axis. The probes are stationary and make 

readings ( ) ( ) ( )1 2 3, ,m m mθ θ θ Lwhile the artefact rotates about its z  axis. The right hand side of the graph shows 
a photograph of the capacitive probe setup and a drawing of the experimental setup used in the tests described below. 

The probe readings can be represented by equation (4). Here ( )sx θ and ( )sy θ are x and y spindle error 
motions. There are n probes in the setup. 
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A new function ( )M θ  can be created by multiplying the measurement equations ( ) 1
i

m i nθ → = L in 
(4) by weighting coefficients 21, na aL and summing the results (equations (5) and (6)).  

 ( ) ( ) ( ) ( )1 2 2 n nM m a m a mθ θ θ θ= + + +L  (5) 
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Imposing the condition (7) eliminates the spindle error contributions ( )sx θ and ( )sy θ by forcing them 
to be zero. The weighting factors 2ia i n→ = L are found by solving the simultaneous set of equations 
(7). 
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In equation (7), there are two equations for n unknown constants. Therefore a minimum of two 
coefficients 2a and 3a (i.e. three probes) are required to satisfy (7). In the three-probe form error spindle 
motion separation technique, the weighting coefficients are defined by the orientation angles 2ϕ  and 

3ϕ of the probes and are given by ( )2 3 2 3sin sina ϕ ϕ ϕ= −  and ( )3 2 2 3sin sina ϕ ϕ ϕ= − − . More probes 
give 3n − degrees of freedom in selecting ( )3 na aL and theoretically avoid harmonic suppression and 
improve measurement accuracy. Other problems, most notably their alignment can reduce the 
advantages of more than 3 probes. Several propositions for the selection of the weighting coefficients 
( )3 na aL  when more than three probes are used are discussed in [15]. 

It is assumed that the form error ( )f θ can be represented by a Fourier series where kA and kB are the 
Fourier coefficients 
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Substituting (8) into the summed result of equation (6), expanding, then using angle addition identities 
and collecting common terms of coskA kθ , sinkA kθ , coskB kθ  and sinkB kθ  gives (9). 
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Defining the terms 2 21 cos cosk n na k a kα ϕ ϕ= + +L and 2 2sin sink n na k a kβ ϕ ϕ= +L ; and remarking 
from equation (7) that when 1k = , both 1 0α = and 1 0β = gives equation(10). 
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Coefficients kF and kG  in (11), are found by calculating the discrete Fourier series of the summed probe 
readings ( )M θ in (5), and the coefficients kA and kB of (8) are found by solving the matrix equation 
(12). 
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In equations (11) and (12) 2k m= L , where m is the number of discrete harmonics used in the Fourier 
series. The 1k = harmonic represents the eccentricity or centring error of the principal axis of the 



artefact and the rotation stage. This once around error is generally removed from radial motion error 
measurements [7]. It contains no ( )f θ , ( )sx θ or ( )sy θ information. 

With kA  and kB determined, ( )f θ  is calculated from (8), and finally ( )sx θ and ( )sy θ are derived from 
(4). 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 2 2  cos sinsx m f sy m f sxθ θ θ θ θ θ θ ϕ ϕ= − = − −  

1.6. Face error separation 
The multi-probe error separation can also be used to determine the axial ( )sz θ and wobble ( )xw θ and 

( )yw θ  error motions by separating them from the artefact vertical face form error ( )f θ . The equations 
for the n probe readings are given by equation(13). 
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With four unknowns in (13), a minimum of four probes are required. As with the multi-probe radial 
separation technique the measurement equations ( ) 1

i
m i nθ → = L in (13) are multiplied by weighting 

coefficients 21, na aL  and the results summed eliminating axial ( )sz θ and wobble ( )xw θ and ( )yw θ  
error motions contributions analogous to (6). 

The coefficients 2 na aL  are found in the same way as (7). With four probes the coefficients are 

2 3,a a and 4a are fixed. More probes give 4n − degrees of freedom in selecting 5 na aL  and can 
theoretically avoid harmonic suppression and improve measurement accuracy [13, 15]. Once again this 
improvement is strongly dependent upon probe alignment.  

The solution to the form error follows analogously the radial error separation technique described in 
equations (8) to (12). With the ( )f θ known, ( )sz θ , ( )xw θ and ( )yw θ  can be determined by solving 
(14) by least squares.  
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1.7. Measurement Results 
This section examines the three-probe radial and four point face form error spindle motion separation 
technique using redundant measurements. Five probe supports were installed around the TMM plateau 
as shown in Figure 4. Two probes, one measuring horizontal displacement and the other vertical 
displacement were installed on each probe support. The horizontal probes had a nominal range of 
250µm while the vertical probes had a range of 500 µm. 
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Figure 5 Results of radial form error spindle motion separation. The top left graph shows the horizontal artefact form 
error. The top middle and right graphs show the x and y spindle motions respectively. The bottom graphs show the 
residual errors of the 6 measurement series used in the test. The residual standard deviations are better than 25 nm. 

There are 10 possible three probe combinations of the five radial probe measurements. The overall 
standard deviation for the 10 measurement series was 31 nm. Of the 10 radial combinations, four were 
found to be relatively noisy. This is certainly due to probe alignment which is a problematic with this 
technique. Removing the four problematic measurement series results in an overall standard deviation 
of 23 nm for the form error and x and y spindle motion determinations. These results are shown in 
Figure 5. 
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Figure 6 Results of face form error spindle motion separation. The top left graph shows the vertical artefact form error. 
The bottom left graph shows the residuals with respect to the mean of the four good data series for the form error. The 
mean residual standard deviation is 31 nm. The three middle graphs show the sz , xw and  spindle motions 

respectively. The three right hand graphs show the residual errors of the spindle motions of the four good series with 
respect to their mean curves. The residual standard deviations are 31 nm, 0.35 µrad and 0.24 µrad respectively. 

yw

There are five possible four probe combinations for the five face probe measurements. The overall 
mean standard deviation for the form error determination of the five combinations is 79 nm. Of the five 
combinations, one was found to be particularly noisy. Removing this series gives an overall mean 



standard deviation in the face form error determination of 31 nm. The uncertainties in ( )sz θ , ( )xw θ and 

( )yw θ once again ignoring the noisy data series are 31 nm, 0.35 µrad and 0.24 µrad respectively. 
Results for these comparative tests are shown in Figure 6. 

4. Conclusions 
The TMM, which is used in the calibration of high precision theodolites, is capable of discriminating 
angular movements on its main rotation axis better than 0.05 arc-seconds. However, to achieve 
maximum performance, parasitic movements on the other 5 degrees of freedom of the table must be 
measured. It has been shown that it is possible to make a simultaneous determination of the three 
translation and two tilt motions of the table using high precision capacitive probes. The uncertainties in 
the parasitic error motion determination are less than 50 nm and 0.5 µrad for translational and rotational 
movements respectively. 
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