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Overview

* The CLS and the RF Cavity

* The Cryogenic System

* The Liquid Helium (LHe) Supply Line
* Modeling and Simulation Procedure

« Results




Canadian Light Source Inc.

=« RF Cavity
* 500 MHz VHF

* Replenishes lost
electron beam
energy

* Superconducting
*Operates ~4.5 K

* Requires LHe
Cryogenic system




=28 The Cryogenic System

LHe Transfer Line




== The Cryogenic System

« Computer Model of entire cryo system desired
= Dynamic system model — Controls perspective
= Can answer guestions about system operation
=« Model individual components and connect
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=8 [he LHe Supply Line

* LHe Line Is one component of the system
= Possibly most complex model

* LHe Line Exhibits Two-Phase Flow
= Much more difficult to simulate

= May be required to create effective dynamic
model
= Flow bolling due to:

* Temperature increase
* Pressure decrease causes majority of boiling



== Modeling and Simulation

¢ of LHe Supply Line Simulation:

ADbility to simulate liguid and gas flowrates
exiting the LHe line

Determine whether gas has impact on flow

Determine whether a simpler model can
produce accurate results

Quasi-Steady-State?
Simple dynamic model?



== Modeling and Simulation

* Two-Phase Flow Modeling
= 1-D Conservation equations

* Mass of Gas
* Mass of Liquid
* Momentum

* Energy
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* Discretize conservation equations

* Use upwind scheme to solve
= Solution depends only on upstream properties

= Can start at inlet of line and solve each grid
cell in sequence to end of line.
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=7 Modeling and Simulation

* BCs complicate solution
=« LHe line inlet velocity not known
= Outlet pressure known instead

1. Guess Iinlet velocity

2. Solve P, v, a4, T for each cell along pipe

3. If outlet P Is correct then go to next time
step

4. If outlet P is not correct then adjust guess
of inlet v and repeat




= Modeling and Simulation

* To solve P, v, o, T for a grid cell
= Solution of each equation depends on all 4

v Set state ij = state i-1 |

Solve Liquid Mass Is agij > 0?
Cons. (Is there 2-phase Is delta Py, ag i, v and
Vij = Vi1 flow?) T; small enough?

Solve Momentum
Cons.
Pi]‘

Solve Energy Cons. Set Tj to boiling T
Solve Energy Cons. 9 T, = 0.232P,*%2
Ty bij

N Solve Gas Mass Cons. Solve Momentum Cons. Pj
Solve boiling temp A jj
Ty i= 0.232Pij0'252

Is Ty > Toi? Solve Lig Mass Cons.

(Is there 2-phase Vij
flow?)



Results 4

. Abllity to simulate various flows
= R%value = 0.91

* Based on measured rates at CLS

« Simulated various valve positions & heat loads
* Average error 6.3%

o
o
=

0.

Lhe Flowrate (L/s)
o
o
w

—e— Experimental
--=- Simulated

10 15 20
Valve opening (%)




Results .
. Determine if gas impacts flow
= Maximum o, ~0.12 at pipe exit
= o, varies slightly with control valve position
= Some impact on flow of LHe

—e— Void Fraction Gas:

1.21 bar

—m— Void Fraction Gas:

1.00 bar

- LHe Mass Flow:

Mass Flow (g/s)

1.21 Bar

¢ - LHe Mass Flow:
1.00 bar

Void Fraction Gas at Exit

Valve Position




Results

. : Can a simpler model be used?

=« Quasi-steady-state has problems
* o, dynamics are very slow
* QSS can incorrectly predict oscillation size and phase
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——— Results Y4
' : Determine if a simpler model

can be used

Amplitude (db)

—— 2% Complex Model
—&— 20% Complex Model
---m-- 9th Order FDLTI
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