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Abstract 

High precision positioning devices based on flexural hinges are often used in 3rd generation synchrotron 
radiation beamlines. In this work is presented a first approach towards the optimisation of the geometry of 
the notches. The obtained results indicate that the optimal shape will depend on a trade-off between the 
possibility to increase the compliance (i.e. decrease the stress) of the notch for a given deflection on one 
hand and the entity of the parasitic shift accompanying the main degree of freedom of the notch on the 
other. The optimum will thus be chosen from the here presented guidelines based on the application the 
designer is confronted with. 

 

1. Introduction 
In order to guarantee the stability and reproducibility of beam position, one of the most important tasks 
in designing 3rd generation synchrotron radiation equipment and instrumentation is the ultra-high 
precision positioning of optical components and other elements with resolutions, accuracies and 
precisions in the (sub)nanometric and micro(nano)-radian ranges [1]. In the mechanical design of the 
considered positioning mechanisms such requirements, especially when coupled with ultra-high 
vacuum and radiation compatibility needs, result very often in the usage of compliant mechanisms 
relying on the elastic properties of matter. Such devices are then mostly based on the employment of 
flexural hinges [2]. 
 
Up to recently the choice of the notch shapes for flexural hinges was determined by the available 
production technologies. In fact, the notches were mainly produced by conventional rotating machine 
tools and therefore limited to circular shapes. The availability of high-precision milling and especially 
Electro-Discharge Machining (EDM), as well as other micro- and meso-manufacturing technologies 
(e.g. deep X-ray lithography), has allowed these limitations to be overcome. The shape of the notches 
(Fig. 1) can therefore today be chosen based on the design requirements for the specific application. 
In the design of optics manipulation mechanisms for 3rd generation synchrotron radiation beamlines, the 
need to achieve ever grater precision (down to an Å and nrad level) with large travels (respectively 50 
mm and several degrees, i.e. needing far greater compliance) has generated thus a clear tendency to use 
flexural hinges of non-circular shapes [3, 4]. Other authors have recently also investigated non-circular 
hinge shapes with the aim of defining closed form analytical formulations of the resulting stress-strain 
behaviour. In [5] have hence been considered elliptical flexural hinges, whereas in [6] have been 
considered parabolic and hyperbolic notch shapes. 
 
In none of the studies available in literature is, however, tackled the problem of the optimisation of the 
hinge shape based on the mechanical requirements of minimizing the stresses in the notches for a given 
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value of the primary rotational degree of freedom of the notch [5]. This work presents a trial to 
overcome this situation by investigating different notch shapes with the objective of determining the 
shape of the transition between the bulk material and the hinge (‘fillet’ region) that allows the stress in 
the hinge to be minimised. Results obtained by comparing the stress-strain behaviour of the two limit 
cases (leaf spring (prismatic beam) shaped notches and circular hinges) with intermediate shapes based 
on optimised circular and elliptical fillet shapes, as well as on shapes obtained in classical mechanics 
via stress concentration minimisation criteria for shoulder fillets [7-9], are thus presented. 

2. Hinge Shape Definitions 
In order to allow the comparison of the different fillet shapes, for all the considered notches a constant 
hinge aspect ratio L/hmin (Fig. 1) was assumed: 
 25

min

==
h
Lγ  (1) 

Such a value was chosen with the aim of emphasizing the effects of the fillet region, while concurrently 
meeting the technological limits imposed by today’s precision manufacturing processes such as EDM, 
water jet cutting, laser cutting or deep X-ray lithography (experimental tests have, for example, shown 
that it is not possible to manufacture prismatic beams with aspect ratios greater than γ ~ 50 without 
degrading significantly the machined surface quality [10]). 
The other geometrical parameters of the considered flexural hinge shapes are shown in Fig. 2, where the 
zones A (fillet junction with bulk material), B (junction between fillet and prismatic segment) and C 
(hinge centre) define the expected maximum stress level regions. 
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Fig. 1: Geometrical parameters used to define the hinge shapes under study: L – total length of the 

hinge, Lp – length of the prismatic segment of the hinge, hmin – minimal thickness of the hinge, 
rx and ry – fillet length and height 

Six different hinge shapes have been considered: 
1. The prismatic beam hinge (leaf spring). 
2. The circular hinge (conventional rotational joint). When rx = L/2 the hinge is designated as a ‘right 

circular hinge’. In this study is considered the general case where a prismatic segment of length Lp 
can also be inserted between the two fillets (Fig. 2); this circular hinge shape has thus a free 
parameter rx = ry = r (coupled with Lp) that could be optimised (see below): 
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Fig. 2: The circular hinge family of shapes 
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Fig. 3: The Grodzinski fillet shape 

     
Given their broad usage in high-precision applications, the prismatic beam (leaf spring) and the 
circular hinge shapes will be used as the two limit cases to be compared with the other (‘non-
conventional’) shapes. 

3. Elliptical hinge: a variant of the circular hinge, where the segment of a circle is replaced with the 
segment of an ellipse whose semi-axes are rx and ry. The elliptical hinge has two free parameters 
that can be optimised (see below): the length of the prismatic section of the hinge Lp and the fillet 
aspect ratio ry/rx. 

4. Grodzinski hinge [7] (Fig. 3 and 5): a hinge with fillets of parabolic shape. As shown in Fig. 3, the 
entities rx and ry are divided here into equal number of parts, but numbered in a reverse order; 
homonymous numbers are then connected enveloping a parabola. As in the case of the elliptical 
hinge, the Grodzinski fillet has two free parameters: Lp and ry/rx. In this case, however, as a first 
step, these parameters were assumed to be of a determined fixed value (see Table 2). 

5. Baud hinge [8] (Fig. 4 and 5): the fillet shape has here the same contour as that given mathematically 
for an ideal, frictionless liquid freely flowing out from an opening at the bottom of a tank. The 
shape is thus determined from the well know fluido-dynamic similarity principles often applied to 
determine the effects of stress concentrators [11], and is thus called of ‘streamline form’. This 
streamline curve, shown experimentally to produce practically no stress concentrations for a 
shoulder loaded in tension, has the fillet height of ry = hmin/π and is defined by the following 
parametric equations: 
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 2/0 πθ ≤≤  (5) 
The boundary conditions are given as: 
- for θ = 0 (θ is the inclination of the tangent to the fillet with respect to the y coordinate - Fig. 1): 

x = 0 and y = hmin.(1/2+1/π) 
- for θ = π/2: x →  and y = h∞ min/2. 
The fillet length rx would thus be infinite; by the assumption defined in eq. (1) it is, however, 
practically truncated to the desired aspect ratio, i.e. 
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γ
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6. Thum & Bautz hinge: the Baud streamline fillet has been here optimised empirically for the 
bending case for which the material in the Baud fillet was not optimally used [8, 9]. The shape of 
this fillet is given in Table 1. Four such fillets joined so that the hinge aspect ratio value γ is 
maintained equal to 25 form then the Thum and Bautz hinge (Fig. 4 and 5). 

Table 1: Geometrical parameters defining the Thum & Bautz fillet 
x/hmin h(x)/hmin x/hmin h(x)/hmin

0 1.475 0.3 1.052 
0.002 1.420 0.4 1.035 
0.005 1.377 0.5 1.026 
0.01 1.336 0.6 1.021 
0.02 1.287 0.7 1.018 
0.04 1.230 0.8 1.015 
0.06 1.193 0.9 1.012 
0.08 1.166 1 1.010 
0.1 1.145 1.3 1.005 

0.15 1.107 1.6 1.003 
0.2 1.082 ∞  1 

The comparison of the geometrical parameters of the considered hinge shapes is given in Table 2, while 
the graphs of Fig. 4 and 5 allow their geometries to be compared. 

 Table 2: Geometrical parameters defining the considered hinge shapes 

 prismatic 
beam 

circular 
hinge elliptical hinge Grodzinski 

hinge [7] Baud hinge [8] Thum & Bautz 
hinge [9] 

Fillets 
no fillets 

(sharp right 
angle) 

quarter of a 
circle of 
radius r 

quarter of an 
ellipse (rx and ry 

as semi-axes) 

parabolas as 
on Fig. 3 with 
rx = ry = hmin

parametric eq. 
(3), (4) and (5) Table 1 

L/hmin L/hmin = 25 L/hmin = 25 L/hmin = 25 L/hmin = 25 L/hmin = 25 L/hmin = 25 
Lp Lp = L Lp = L – 2.r Lp = L – 2.rx Lp = L – 2.rx Lp = 0 (rx = L/2) Lp = 0 (rx = L/2)
ry/rx not defined ry/rx = 1 free parameter rx/ry = 1 ry/rx = 0.0255 ry/rx = 0.019 
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     (a)           (b) 
Fig. 4: Right circular, Baud and Thum & Bautz hinge shapes. The same scales are used for the x and y 

axes to show true proportions (a); an enlargement of the same graph (b) emphasises the 
difference between the Baud and the Thum & Bautz fillets 
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Fig. 5: Comparison of the circular (r = 1.3.hmin),          Fig. 6: Detail of the mesh used for the FEM  

Grodzinski (rx = ry = hmin), Baud and           simulation of an elliptical hinge 
Thum & Bautz hinges 

In Fig. 4 and 5 can be seen that the Grodzinski, Baud and Thum & Bautz shapes have a propensity 
towards a slender (prismatic beam) rather than a circular hinge. These hinges are therefore expected to 
be in any case more compliant that the circular one, allowing thus the stress in the hinge for a given 
deflection to be reduced. It should be mentioned, however, that these fillet shapes have been developed 
for bulky shoulder fillets, i.e. for axial-symmetric geometries [12]. On the other hand, the hinges 
considered in this work are planar (sheet) structures. However, the results reported in [11, 12] allow 
establishing that for the same load cases the stress behaviour in the two cases is very similar (for axial-
symmetric cases the stress concentration factor is only slightly lower than that of planar geometries). 
Moreover, since here are considered reasonably thin structures, their behaviour can certainly be 
considered equivalent to that of the central portion of the axial-symmetric case, i.e. the possible 
influence of the boundary layer of the axial-symmetric case in the transversal direction can be 
neglected. Based on all these motivations, an investigation of the fillet shapes given in [7-9] seems a 
reasonable approach. 

3.  Hinge Shape Optimisation 
The objective function for the optimisation is defined as the quest for a hhiinnggee  tthhaatt  iiss  ssuubbjjeecctteedd  ttoo  tthhee  
lloowweesstt  ssttrreessss  ffoorr  aa  ggiivveenn  bbeennddiinngg  aannggllee. Since the entity of the stress varies along the hinge length, the 
stress that will be considered is then the absolute maximum stress along the hinge, i.e. the stress that is 
likely to cause the hinge fatigue failure. 

3.1. Hinge Stress Calculation Methods 
In all the performed calculations the hinges are rigidly fixed at one end and loaded with a pure bending 
torque T on the free end. The analytical calculation is then performed assuming that the hinges are 
beams of varying cross section, with b being the constant hinge width and h(x) being the hinge 
thickness varying along its length. The stress is thus calculated as: 

 
)(

6)( 2 xbh
Tx =σ  (7) 

whereas the normalized stress in the hinge, expressed in rad-1 and independent of the hinge width b, is 

 
α

σσ
En =  (8) 

The curvature formula of the hinge is 
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Here y’’(x) is the second derivative of the deformed shape of the hinge and E is the Young’s modulus of 
the used material. 
The hinge angular stiffness is defined as 
 

αθ
T

Ly
Tk ==

)('
 (10) 

where y’(L) = α, used already in eq. (8), is the rotation angle of the tip of the hinge. 
For a given rotation angle α, these equations allow the corresponding bending torque T to be derived, as 
well as the maximum stress across the hinge to be calculated. In pure bending, the maximum stress will 
always occur where the thickness h(x) is minimal. 
This analytical approach based on the classical structural mechanics gives accurate results if the beam 
cross-section varies slowly along the beam length. In the case of sharper variations of the cross section, 
stress concentration effects that are not taken into account appear as well. In the latter case, a Finite 
Element Method (FEM) approach is generally the preferred one. In the course of the work, FEM 
simulations were thus also performed for some of the hinges. Both the NASTRAN and the FEDEM 
FEM codes were used to ensure the correctness of the simulations. This has allowed the stress 
concentrations in the areas of sharply changing curvature (indeed the fillets) to be accurately studied. 
Three and four node shell elements were used for the non-linear analysis; the mesh was made denser in 
areas of expected stress peaks (Fig. 6). 
The FEM approach has, however, proven to be more programming-time intensive than the analytical 
one. The two outlined approaches were hence used complementarily throughout the presented study. 

3.2. Stress in the Prismatic Beam Hinge 
The stress in the prismatic beam hinge that has perfectly sharp right angles at its ends (leaf spring) 
cannot be calculated by FEM, since a finite fillet radius would be required to estimate the stress 
concentration effects. As already pointed out, the calculation of the nominal stress for this case (no 
stress concentration) is, however, useful as a reference case for comparison with the other hinge shapes. 
The normalized stress calculated analytically for this case is thus 

 0216.0
2

min
_ ==

L
hanalytical

prismaticnσ  rad-1

For a leaf spring made of steel (E = 210 GPa) whose free end is rotated by 5° (0.0873 rad) under a pure 
torque loading, the stress would thus be 
  MPa. 3960873.0102100216.0 9

_ =⋅⋅⋅== ασσ Eprismaticn

3.3. Stress in the Circular Hinge 
In this case the fillet radius r is kept as a free parameter (Fig. 7). For r = L/2 (right circular hinge) the 
normalized stress assumes the value of 
  rad126.0__ =analytical

CircularRightnσ -1

which is 5.8 times bigger than for the prismatic beam hinge. As r is reduced (i.e. the length of the 
prismatic segment is increased), the compliance of the hinge increases thus reducing the normalized 
stress level. However, when r approaches hmin, stress concentration effects appear and a localized stress 
concentration at the junction between the prismatic segment and the fillet (zone B in Fig. 1) is observed. 
Hence, reducing r below a certain optimal value will cause the maximum stress level to rise. Using the 
FEM approach (Fig. 7 and 8) this optimal r value was established to be 
 min3.1 hropt ⋅=  (11) 
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while the corresponding normalized stress for this optimised circular hinge then turned out to be 
  rad0254.0_ =FEM

Circularnσ -1

This value is 18% higher than that of the prismatic-beam hinge and still 5 times lower than that of the 
right circular hinge. 
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Fig. 7: Maximum normalized stress [rad-1] in         Fig. 8: Stress distribution in a circular hinge  

the circular hinge. When r is reduced         with fillet radius ropt = 1.3.hmin 
below 2.h stress concentration effects 
(reflected by the FEM curve) appear 

3.4. Stress in the Elliptical Hinge 
The particular case where Lp = 0 corresponds to a ‘pure elliptical hinge’ without a prismatic segment 
(Fig. 9). The parameter that was optimised in this case is the fillet aspect ratio ry/rx. 
In this case two high stress level zones appear: one at the hinge centre where the thickness is minimal 
(zone C in Fig. 1) - designated here as ‘gross stress’, and one at the fillet start where the radius of 
curvature can be sharp (zone A in Fig. 1) - designated here as ‘local stress’ (Fig. 10 and 11). As ry/rx is 
reduced, the gross stress decreases and the local stress increases. The optimal fillet aspect ratio 
corresponds then to the ry/rx value where the curves of the local and the gross stress intersect (Fig. 10), 
i.e. ry/rx = 0.022. In the considered case (Lp = 0) this corresponds thus to 
  (12) LrLr opt

yx ⋅== 011.0,2/

The normalized stress level of this optimised pure elliptical hinge is then 
  rad0275.0__ =opt

ellipticalPurenσ -1

i.e. 8% higher than by the optimised circular hinge, 27% higher than in the leaf spring case but still 4.6 
times lower than by the right circular hinge. 
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Fig. 9: The pure elliptical hinge family         Fig. 10: Maximum normalized stress [rad-1] in 

the pure elliptical hinge 
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 Zoom on the fillet start region

 
Fig. 11: Stress distribution along the elliptical hinge. The upper picture shows one half of the hinge, the 

lower one is giving an enlargement of the ‘local stress’ critical zone 
In the particular case of elliptical hinges where ry is chosen to be equal to that of the Baud hinge (ry = 
hmin/π), the rx semi-axis of the ellipse (that is coupled to the prismatic segment length through Lp = L – 
2.rx) is the free parameter to be optimised (Fig. 12 and 13). In this case ry/rx = 0.21 was obtained as the 
optimal value (Fig. 13), so that 
  (13) LLLrrLr opt

pBaudyy
opt
x ⋅=⋅==⋅= 878.0,0127.0,061.0 _

and the respective normalized stress level is 
  rad023.0_ =opt

Ellipticalnσ -1

This value is only 6.5% higher than that of the prismatic beam and meaningfully lower than the 
normalized stresses in the optimised circular and optimised pure elliptical hinge. 
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Fig. 12: Elliptical hinges with ry = ry_Baud - for        Fig. 13: Maximum normalized stress [rad-1] in  
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3.5. Stress in the Grodzinski Hinge 
The normalized stress in the Grodzinski hinge calculated with the analytical method is 
  rad0224.0_ =analytical

Grodzinskinσ -1

A FEM simulation (Fig. 14) of this shape showed a stress concentration factor of 1.1 at the location of 
zone B in Fig. 1. The maximum normalized stress is thus 
  rad0245.01.1 __ =⋅= analytical

Grodzinskin
FEM

Grodzinskin σσ -1

This value is hence within 4% from that of the optimised circular hinge, which is also understandable 
observing in Fig. 5 that the two shapes are similar. 

 
Fig. 14: Stress distribution in a prismatic hinge with Grodzinski fillets; the stress level at the junction 

between the fillets and the prismatic segment is slightly higher than that in the hinge centre 
resulting in a stress concentration factor of 1.1 
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3.6. Stress in the Baud Hinge 
In the case of the Baud hinge the maximum stress appears at the hinge centre (i.e. σmax (x) = σ (L/2) - 
zone C in Fig. 1). The normalized stress in the Baud hinge calculated with the analytical and the FEM 
approach is respectively 
  rad0223.0_ =analytical

Baudnσ -1           rad0216.0_ =FEM
Baudnσ -1

The difference between the two calculation methods is therefore 3%, with the analytical value being 
only 3% higher than that of the leaf spring (5.7 times higher than by the conventional right circular 
hinge). This justifies thus once more the need to consider the streamline fillet shapes developed for 
bulky axial-symmetric shoulders also in the case of planar structures. 

3.7. Stress in the Thum & Bautz Hinge 
The normalized stress in the Thum & Baud hinge calculated with the analytical and the FEM method is 
  rad0219.0_ =analytical

TBnσ -1           rad0228.0_ =FEM
TBnσ -1

The analytical value is hence 1.8% lower than that of the Baud Hinge, 5% lower than that of the 
optimised elliptical hinge with ry = ry_Baud (cf. in this regard Fig. 12), and merely 1.4% higher than that 
of the prismatic beam hinge where no stress concentrations are considered. In terms of stress levels, this 
shape presents thus very small improvement potential and, among the considered cases, the respective 
fillet can thus be considered to be the absolute optimum. 

4. Parasitic Shift Calculation 
In the case of the classical circular hinges the rotation axis is localized near their thinnest portion (in 
this point is then also concentrated the stress, which limits the reachable deflections). On the other hand, 
by employing a leaf spring the deflection is distributed over its length thus lowering the stresses, but the 
hinge point is not fixed and it moves along the beam as it deflects [5]. It literature was already shown 
that in the latter case (e.g. by using flexural pivots [13]), the overall precision of the positioning devices 
can thus be considerably decreased. The parasitic deflections of the considered hinge shapes have 
therefore been evaluated analytically and numerically, allowing hence preliminary guidelines for the 
designers of high-precision mechanisms based on flexural hinges to be provided. 

4.1. Parasitic Shift Calculation Methods 
A joint with a pure rotational degree of freedom is considered (Fig. 15). Its in-plane imperfections are 
taken into account by following the motion of a point P’ linked to the mobile block, which, at the start 
of the movement, is superimposed with point P - the ideal centre of rotation of the joint. In case of a 
perfect joint, after the rotation of the mobile block by an angle α, point P’ would remain superimposed 
with P; if, however, the joint has in-plane rotational imperfections, P’ is shifted away. The vector PP’ is 
then designated as ‘parasitic shift’. 
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     Fig. 15: Parasitic shift concept            Fig. 16: Parasitic shift of flexural hinges: after rotating the  

       hinge by an angle α, segment PA moves to P’A’ 
Once PP’ is known, the calculation of the position of other points of the mobile block is 
straightforward: point A moves to A’, which corresponds to the ideal position of A (which would have 
been reached if the joint was perfect) translated by the parasitic shift vector PP’. 
In the case of necked down (slender) flexural hinges, the ideal centre of rotation is the centre of 
symmetry of the joint (Fig. 16). The magnitude of the parasitic shift PP’ is here 

 22 ''' yx PPPPPP +=  (14) 

The x and y coordinates of the free end of the hinge are 
   and  λ−= xx AA' ( )LyAy ='  (15) 

where the well-known expression for the axial deformation λ of the hinge, calculated considering the 
variation of its length from the initially straight form to the deformed shape in the equilibrium condition 
[14], is used: 

 ∫=
L

dxxy
0

2))('(
2
1λ  (16) 

whereas the terms y’(x) and y(L) are calculated with the usual approximated expression of beam 
curvature in which the square of the derivative is neglected [13]. Once A’x, A’y and α are known, the 
position of P’, and thus the parasitic shift vector, can be derived from geometrical considerations. 
To validate this approximated analytical approach, FEM parasitic shift calculations were used to study 
the deviation of some of the hinges from an ideal pivot kinematics. This effect is non-linear of nature 
and it turned out to be rather difficult to obtain good results using shell finite elements. In fact, by using 
non-linear analysis in NASTRAN, the sensitivity of the simulations, as well as the ‘microscopic’ nature 
of the parasitic effect, gave poor results. Beam elements were thus used and gave better results. These 
required, however, an extensive work to define the varying cross-section properties. Only a few hinges 
were thus analysed with the FEM approach. 
 

4.2. Parasitic Shift of the Prismatic Beam Hinge 
To verify the proposed approximated analytical parasitic shift calculation method, the results obtained 
by its application have been used first for the calculation of the well-established prismatic beam hinge 
case. 
From the exact curvature formula it is obvious that the deformed shape of the prismatic beam hinge is a 
segment of a circle. It is thus possible to calculate geometrically the x and y components of the parasitic 
shift vector as 
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Fig. 17: Difference between the magnitude of       Fig. 18: Parasitic shift magnitude of the  

the parasitic shift calculated with the          circular hinge with respect to  
exact and the approximated analytical         the normalized fillet radius r/L  
methods             for a α = 5° rotation 

A comparison of this exact parasitic shift value with the value obtained via the approximate analytical 
method described above is given in Fig. 17. It can thus be seen that for small rotations the simplified 
analytical method gives accurate results; as the rotation angle is increased, the error increases 
exponentially. Nevertheless, if the angle is kept reasonably small (< 5°, i.e. in the region where the 
influence of the geometrical non-linearities is still limited [13]) the error on the magnitude remains 
smaller than 0.21%. On the other hand, FEM simulated non-linear behaviour of the prismatic-beam 
hinge for a rotation α = 5° allowed obtaining a value of the parasitic shift vector magnitude of 
  (18) LPP  ' FEM

prismatic ⋅⋅= −410340.6

In Table 3 is given the comparison of the results of the normalised parasitic shift magnitude PP’/L 
obtained with the exact and the approximated analytical approach, as well as via a FEM approach, 
validating thus the approximated analytical method in the case of the prismatic beam hinge. This 
method has therefore been used to calculate also the magnitude of the parasitic shifts of the other 
considered hinge shapes. 

Table 3: Comparison of the parasitic shift results for the prismatic beam hinge 

Calculation method Normalized parasitic shift magnitude 
for a rotation angle α = 5° 

Error with respect 
to ‘exact’ value  

Exact analytical formulation 410345.6/ −⋅=LPP  ' exact
prismatic  / 

Approximated analytical 
approach 

410358.6/ −⋅=LPP  ' approx
prismatic  0.2% 

FEM 410340.6/ −⋅=LPP  ' FEM
prismatic  -0.08% 

 

4.3. Parasitic Shift of the Circular Hinges 
The leaf spring hinge is a particular case of a circular hinge with r = 0 for which the normalised 
parasitic shift is 6.358.10-4 (approximated analytical method result for a 5° rotation). The right circular 
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hinge is another particular case of the circular hinge with r/L = 0.5; in this case the normalized parasitic 
shift for a 5° rotation is 
  4

_ 10748.1/' −⋅=LPP analytical
circularRight

i.e. 3.6 times smaller than for the prismatic beam hinge. 
As shown in Fig. 18, between these two extreme cases the normalized parasitic shift varies almost 
linearly with respect to r. A calculation of the normalized parasitic shift of the right circular hinge for a 
5° rotation was performed also via non-linear FEM analysis: 
  4

_ 10675.1/' −⋅=LPP FEM
circularRight

This value is 4% higher than the corresponding analytical result. 
In section 3.3. was shown that there is an optimised circular hinge with fillet radius ropt = 1.3.hmin that is 
subjected to the least stress for a given rotation angle. For a given hinge aspect ratio γ = 25 this gives 
ropt/L = 0.052. The corresponding parasitic shift (Fig. 18) is then 
  410014.6/' −⋅=LPP analytical

Circular

which is still 3.4 times bigger than for the conventional circular hinge, but also 9% smaller than for the 
leaf spring. 

4.4. Parasitic Shift of the Elliptical Hinges 
Fig. 19 shows the parasitic shift of the pure elliptical hinge. Interesting particular cases are ry/rx → 0 
(corresponding to the prismatic beam hinge), ry/rx = 1 (corresponding to the right circular hinge) and 
ry/rx = 0.022 (corresponding to the optimised pure elliptical hinge of section 3.4.). The normalized 
parasitic shift in the latter case is 
  4

_ 1058.5/' −⋅=LPP analytical
ellipticalPure

i.e. 7% smaller than for the optimised circular hinge, 12% smaller than for the prismatic beam hinge 
and 3.2 times bigger than for the right circular hinge. 
In Fig. 20 are shown the parasitic shifts of the elliptical hinges that have the same fillet height ry as the 
Baud hinge. As shown above, the optimal hinge of this family has a fillet ratio ry/rx = 0.21 so that the 
corresponding normalized parasitic shift magnitude in this case equals 
  41021.6/' −⋅=LPP analytical

Elliptical

This value is 3% higher than that of the optimised circular hinge, 11% higher than that of the optimised 
pure elliptical hinge, merely 2% lower than the parasitic shift magnitude of the leaf spring and 3.6 times 
higher than that of the right circular hinge. 
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Fig. 19: Normalized parasitic shift of the pure       Fig. 20: Normalized parasitic shift of the  

elliptical hinge for a α = 5° rotation       elliptical hinge with ry = ry_Baud  
             for a α = 5° rotation 
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4.5. Parasitic Shift of the Grodzinski, Baud and Thum & Bautz Hinges 
According to the approximated analytical approach, the normalized parasitic shift magnitude of the 
Grodzinski hinge for a 5° rotation is 
  41014.6/' −⋅=LPP analytical

Grodzinski

For the same rotation, the normalized parasitic shift of the Baud hinge is 
  4102.6/' −⋅=LPP analytical

Baud

while the normalized parasitic shift of the Thum & Bautz hinge is 
  4103.6/' −⋅=LPP analytical

TB

These values are hence very close to that of the optimised elliptical hinge with ry = ry_Baud (the 
differences being respectively -1%, 0.2% and 1%). Their ratios to the parasitic shift values obtained for 
the right circular hinge, the optimised circular hinge, the optimised pure elliptical hinge and the 
prismatic beam hinge are therefore correspondingly close to those cited above for the optimised 
elliptical hinge which has the same fillet height ry as the Baud hinge. 

5. Comparison Between Hinges 

5.1. Normalized Stresses 

A comparison of the normalized stresses of the studied hinges given in Fig. 21 evidences the fact that 
the Baud and the Thum & Bautz hinge shapes have stress levels that are very close to an idealized 
prismatic beam that has no stress concentration (with the Thum & Bautz shape being subjected to 
slightly lower stresses than the Baud hinge). In terms of stresses, these shapes present thus very little 
room for further improvements, and are indeed better than the other analysed shapes. In fact, the 
optimised elliptical hinge that has the same fillet height ry as the Baud hinge is subjected to 3% more 
stress than the latter for the same bending angle. The optimised pure elliptical hinge, the optimised 
circular hinge and the Grodzinski (parabolic fillet) hinge are respectively subjected to 26, 16 and 12% 
more stress than the Thum & Bautz hinge. All these shapes are, however, far more compliant than the 
conventional right circular hinge, which is subjected to as much as 5.75 times higher normalized 
stresses than the Thum & Bautz hinge. 

 5.2. Parasitic Shift Magnitude for a 5° Rotation 
As shown on Fig. 21, the price to pay for the increased compliance of the hinges is the resulting 
parasitic shift. It is in fact clear that all the slender shapes approaching the leaf spring have parasitic 
shifts magnitudes that for a 5º rotation are between 3.6 (Thum & Bautz) and 3.2 (optimised pure 
elliptical hinge) times higher than that of the right circular hinge. The Thum & Bautz hinge, the 
optimised elliptical hinge with ry = ry_Baud, the Baud hinge, and the Grodzinski hinge (in this particular 
order) are then the hinges which, in terms of the parasitic shift magnitude, come the closest (between 1 
and 3.6%) to the idealised prismatic beam hinge. On the other hand, the optimised circular and pure 
elliptical hinges produce respectively 13 and 5% smaller parasitic shifts than the Thum & Bautz hinge. 
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Fig. 21: Ratio of the normalized stress of the right circular (RC) hinge vs. the normalized stress of the 

other hinges (white bars) and ratio of the parasitic shift of the various hinges vs. the parasitic 
shift of the RC hinge (hachured bars). P - prismatic beam hinge, OC - optimised circular 
hinge, OPE - optimised pure elliptical hinge (Lp = 0), OE - optimised elliptical hinge with ry = 
ry_Baud, G - Grodzinski hinge, B - Baud hinge, TB - Thum & Bautz hinge 

The choice of the optimal hinge shape for a particular application will thus necessarily depend on a 
trade-off between compliance and parasitic shift. 

6. Conclusions and Outlook 
This work presents a first systematic attempt towards the optimisation of the shape of flexural hinges to 
be used in the design of high-precision positioning mechanisms for synchrotron radiation and other 
instrumentation. It is shown that by optimising the shape of the conventional circular hinges, as well as 
by adopting optimised elliptical or shapes obtained originally via stress concentration minimisation 
criteria for bulky shoulder fillets, a considerable increase of the compliance of the notches can be 
obtained. This results in far lower stresses for a given rotation angle or, alternatively, in a far larger 
displacement range before reaching the fatigue lifetime limit; the considered streamline fillet shapes 
present, in fact, very little room for further improvement with respect to an idealised case of a prismatic 
beam with no stress concentration. This in turn confirms also the validity of the assumption that the 
stress-strain behaviour of planar geometries can be considered equivalent to that of the central portion 
of axial-symmetric shoulder fillets. 
The compliance increase can, however, be achieved only at the expense of an increase of the parasitic 
shift. The designer, depending on the particular application, will thus be able to choose a configuration 
such as the Thum & Bautz or Baud shape, if he is concerned mainly with stress minimisation, or 
alternatively the optimised circular or pure elliptical shapes, if he will be aiming at a parasitic shift 
minimisation while still wishing smaller stresses than those of a conventional right circular hinge. 
The here obtained results are limited to a fixed hinge aspect ratio value of 25. A preliminary 
investigation of the influence of the aspect ratio on the stress and parasitic shift values has allowed 
establishing that the normalised stress is inversely proportional to the hinge aspect ratio L/hmin. The 
improvement of the compliance with the increase of the hinge aspect ratio is, however, less pronounced 
in the case of the pure elliptical hinge and the right circular hinge; in the latter case the compliance is, in 
fact, increasing proportionally to the square root of the aspect ratio. It is important to mention here also 
that the optimised hinge dimensions are valid only for a specific value of the hinge aspect ratio and 
would have to be established again for other aspect ratios. 
For slender hinges (those tending to the prismatic beam shape) the normalised parasitic shift seems to 
be roughly independent on the hinge aspect ratio. In the case of the conventional right circular hinge, 
the normalised parasitic shift decreases as L/hmin is increased (Fig. 22). Intuitively can this be explained 
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by the fact that for a hinge of a constant length whose minimal thickness hmin is reduced the compliance 
will tend to become clustered in the centre of the hinge, i.e. the portions of the hinge being further away 
from its centre will contribute less to the total rotation. A similar phenomenon is taking place also for 
the pure elliptical hinge. 
Increasing the hinge aspect ratio L/hmin would thus seem to constitute an appropriate solution since such 
a scheme increases the compliance of the hinge while concurrently, in the worse case, not affecting the 
normalised parasitic shift magnitude (this, however, means that for a constant hmin and an increasing L, 
the absolute value of the parasitic shift would still grow). 
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Fig. 22: Normalized parasitic shift magnitude of the right circular hinge vs. its aspect ratio 

To validate experimentally all of the above theoretical result, an extensive fatigue test campaign on 
EDM produced hinges is planned in the near future. 
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