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SINAP: Transforming……



Shanghai Synchrotron Radiation Facility
A world leading intermediate-energy 3rd generation light source
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What’s Next?



Compared to 3rd generation storage ring based 
synchrotron radiation facilities, the gain factors
are:

• peak brilliance: 109 at the FEL line

• average brilliance: 104 at FEL line (EUR)

• coherence: 109 at FEL line
• pulse duration:            10-3 at FEL line  

The XFEL will not replace the storage ring facilities,
it opens the door to new science

Properties of XFEL radiation

XFEL
spontaneous

radiation

Peak brilliance

With an FEL one gets in a pulse of ~25 fs
duration as many X-ray photons as with a

modern storage ring in 1 sec



Soft X-ray FEL

SDUV-FEL Test Facility

Hard X-ray FEL
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Shanghai photon science center

Compact XFELSXFEL



SXFEL in the SSRF campus

Approved Feb. 2011



SXFEL Main Parameters

Parameters HGHG Upgrade Unit

Output Wavelength 9 3 nm
Bunch charge 0.5~1 0.5~1 nC
Energy 0.84 1.2~1.3 GeV
Energy spread 0.1~0.15% 0.15%
Energy spread (sliced) 0.02% 0.03%
Normalized emittance 2.0~2.5 2.0~2.5 mm.mrad
Pulse length (FWHM) 1. 1 ps
Peak current ~0.5 0.5 kA
Rep. rate 1~10 1~10 Hz



Parameters Value Unit

Output Wavelength 0.1 nm
Bunch charge 250 pC

Energy 6.4 GeV
Normalized emittance 0.4 mm.mrad
Energy spread (sliced) 0.01%

Pulse length (Full) 100 fs
Peak current 3 kA

Rep. rate 60 Hz
FEL parameter 3.41*10-4

Peak power 10 GW
Peak brightness 2*1033

3D gain length 2.156 m
Saturation length 50 m

Shanghai Hard X-ray FEL



λm=5cm
Nm=10

λm=2.5cm

100~500A
1~2mm.mrad
σz =400fs

50~150nm
15~85uJ
1ps/130fs (FWHM)

EUV FEL for DICP, CASEUV FEL for DICP, CAS



FEL projects in Asia

PAL XFEL

DCLS

SXFEL

SACLA



SDUV-FEL Experiment Hall



Shanghai Deep UV FEL (SDUVShanghai Deep UV FEL (SDUV--FEL)FEL)





• 2009.04-08:  Linac commissioning  
• 2009.09-12:  SASE experiment
• 2010.01-03:  Seeded FEL Installations
• 2010.05:       Seeded FEL experiments start 
• 2010.05.17:  HGHG signal
• 2010.05.22:  First Echo signal (‘double-peak’) 
• 2010.07-08:  Install. for high harmonics EEHG
• 2010.12:       HGHG saturation
• 2011. 04:  EEHG amplification
• 2011.07-08:  Cascaded HGHG experiments begin
• 2012.04:       First cascaded HGHG signal

Milestones of FEL experiments



Beam energy 100-150MeV

Beam energy spread 
(projected)

<0.03%

Normalized emittance 4~5mm-mrad

Bunch Length (rms) 1~3ps

Bunch charge 100~300pC

Main Parameters of SDUV-FEL Linac



Linac Commissioning Results

100~150MeV
4~5mm.mrad
……



SASE Results (2009)

350 370 390 nm

SASE 
Spectrum

Period：25mm
Total length： 9 m

Gain length：~0.9m
Saturation length：~20 m

~135MeV
~370 nm



L.H. Yu, PRA 44, 5178 (1991)

HGHG principle



HGHG saturation, Dec. 2010

Gain curveFEL profile

Experiments
S2E
simulations



G. Stupakov, PRL 102, 074801 (2009)

EEHG rationale



First lasing of EEHG FEL, April 2011

FEL profile

Gain curves

Spectrum
Experiments

Simulation





A famous drawing 
from the 1970’s 
showing the relative 
importance of 
experiment vs theory



2-Stage cascade HGHG

Cascaded HGHG



1st Stage 2nd Stage

Final AmplifierSeed

Final Amplifier

n
λλ =1 mn×

=
λλ 2 2λλ =f

Seed-Laser λ

The world first 2The world first 2--stage cascaded HGHG FELstage cascaded HGHG FEL

150MeV

1200nm
600nm 300nm

fresh bunch technique
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First results from a twoFirst results from a two--stage cascaded HGHG FELstage cascaded HGHG FEL

Paper  in preparation



Stability can maximize
the performance of a light source !

Courtesy of Hitoshi Tanaka



Stability can maximize 
the performance of a light source !

Courtesy of Hitoshi Tanaka



As Shintake urged in FEL’04, a linac-based 
light source is essentially unstable without an 
autonomous stabilization mechanism

Strategy and efforts on the beam-stabilization is more 
crucial for linac-based sources rather than for ring-
based ones.

Spinning-Top:

VS

Archery: Linac-based

Ring-based

Courtesy of Hitoshi Tanaka
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• Transverse stability
• Low energy (injector): transverse emittance 

dilution
(depends on the RF-frequency: X-band more 
sensitive than L-band)

• Beam break-up at high average current operation
• High energy (undulator): gain reduction and 

wavelength jitter

• Longitudinal stability (bunch / RF phase)
• Energy fluctuations
• Current fluctuations FEL gain fluctuations
• Temporal jitter with synchronized sources

Electron-Beam Stability

typically a (few) micron 
orbit accuracy 



Noise sources: Transverse

Steering coil 
current regulation 

Quadrupole magnet 
transverse vibration 

Quadrupole current 
regulation with 
misalignments 

Wakefield kicks 
with charge jitter 

CSR kicks with 
charge or bunch 
length jitter 

Drive laser 
pointing jitter 



Longitudinal Loops Stabilize:Longitudinal Loops Stabilize:
DL1 energyDL1 energy
BC1 energyBC1 energy
BC1 bunch lengthBC1 bunch length
BC2 energyBC2 energy
BC2 bunch lengthBC2 bunch length
Final energyFinal energy

Transverse Loops Stabilize:Transverse Loops Stabilize:
Laser spot on cathodeLaser spot on cathode
Gun launch angleGun launch angle
Injector trajectoryInjector trajectory
XX--band cavity positionband cavity position
Linac & LTU trajectory (5)Linac & LTU trajectory (5)
Undulator trajectoryUndulator trajectory

Laser & Electron-Based Feedback Systems
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D. Fairley, J. Wu, LCLS@SLACD. Fairley, J. Wu, LCLS@SLAC



• Electron beam orbit must  be controlled over a few gain-
lengths.

• Within this distance: gain reduction

• Over larger distances the overlap between optical field 
and the electron beam may disappear. In such a case, 
the micro-bunching will re-initiate the FEL process over a 
few undulator periods only. 

Transverse Orbit / Undulator
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T. Tanaka et al., NIM A 528 (2004) 172 

Reduction of radiation efficiency
Smearing of microbunching



LCLS Req. Specifications

• <2um over one gain length (~5m)



Summary and conclusions

FEL activities at SINAP
SXFEL: approved in Feb. 2011, design studies underway
DCLS: approved and funded, design studies underway, 
construction will begin late 2012
SDUV-FEL: nice test bed, however stability improvement 
highly desired

FEL stabilization considerations
A lot of engineering challenges ahead

Your inputs are greatly appreciated.
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