Cryogenic mirror for a-high-heat-load X-ray beamline at SPring-8

T. Mochizukia, K. Akiyamaa, N. Ohtania, N. Kamachia, K. Endoa, A. Q.R. Baronb,c, D. Ishikawab,c, H. Uchiyamab,c, Y. Senbaa, H. Yamazakia, T. Takeuchia, H. Ohashia, and S. Gotoa

aToyama Co., Ltd., 4-13-16, Hibarigaoka, Zama, Kanagawa, Japan
bMaterials Dynamics Laboratory, RIKEN SPring-8 Center, RIKEN 1-1-1 Kouto, Sayo, Hyogo, 679-5148 JAPAN
cJapan Synchrotron Radiation Research Institute, SPring-8/JASRI, 1-1-1 Kouto, Sayo, Hyogo, 679-5198 JAPAN

Introduction

A liquid-nitrogen-cooled (LN) X-ray mirror has been designed and built for the high power loads of a 15m in-vacuum undulator beamline of the SPring-8. It is designed to operate for beam energy of 14 to 25 keV and is vertically deflecting. It was designed as the first mirror to reduce the heat load of the first crystal of DCM. The maximum beam power load to the mirror was estimated to be a max 1.8 kW, and 1 kW absorbed (0.3 kW scattered).

Cryogenic mirror design

At maximum power load, the footprint on the mirror is 367 mm in length in 2.46 mm in width at a grazing incidence angle of 1.5 mrad. The absorbed power is 988 W and the average power density is 1.1 W/mm2. The active area is 800 mm x 20 mm and the total length is 1300 mm. This mirror is indirectly cooled by circulating liquid nitrogen and provided with mechanical bender. The bender mechanism is used for gravity force compensation mechanism and it is also used to collimate the beam. The mirror system was installed at a beamline of BL43LXU (http://user.spring8.or.jp/sp8info/?p=3138) of SPring-8 in 2011.

Heat load management

The heat load of the monochromator crystal is reduced to 0.5 kW, which is the design heat load of the standard SPring-8 DCM. The design heat load of 0.5 kW is achieved by aperture defining components and mirror, which are illustrated below.

SPring-8 BL43LXU Cryogenic mirror

Toyama fabricated and installed two another cryogenic mirrors without bender in the SPring-8 beamlines.