Test, redesign and construction of a new water cooling pump slab bench

Carles Coll del Ram1, Marcos Quispe1, David Carles1, Joan Casas1, Juan José Manotas1, Llúria Ribó1, Gabriel Peña1, Lluis Miralles2

1. CELLS-ALBA, 08290 Cerdanyola del Vallès, Spain.
2. CERN, Geneva, Switzerland

Abstract

The water cooling system at ALBA is divided in two main sub-systems. First the consumption side which consists of four independent circuits, each one with an independent dedicated pumping unit: Storage Ring, Booster, Experimental Area and Service Area. The second one is the production side where all four circuits are collected into a common return circuit where there are mainly the heat exchangers and a buffer tank, ending at the four circuits aspiration manifold. Consequently the return circuit to the production side is a huge piping which needs a pump powered by an asynchronous motor of about 75kW. During the facility start up the maintenance team realized about too much recurrent unexpected reparations of this common return pumping unit. ALBA pump bench standard design consists of a twin pump unit mounted on a single bench. A simulation with FE analysis tools and field measurements on the bench, by means of accelerometers, has shine out the overlap of the two main motor harmonic excitations on the two first resonance modes of the mechanical bench at about 50 Hz and 75 Hz, reaching up to 4 mm amplitude. A new design of the bench has been proposed, aimed to push the resonance modes to higher frequencies far away of the powerful harmonic excitations increasing in turn, the rigidity and therefore reducing the deformation amplitudes. Taking advantage of the need for this new design, also the mechanical interfaces have been improved. A new slab bench prototype has been constructed and tested, reaching up resonances close to 200 Hz and it is ready for installation during next shut down. By means of this new development, pumping benches design criteria is clarified for the rest of pumps. The new design will be applied to all services: water cooling as well as air conditioning which are still based on the initial ALBA standard approach.

Precedents

In order to diagnose the problem two action were taken:

- Model & simulate the concrete slab
- Vibration measurement during operation

Abstract

The reparation periodicity on the motor pump: 75 kW

The slab is composed by:
- As there are two pumps installed on the slab bench
- The slabs must be designed as a single pump per slab bench: no redundancy
- Concrete thick base
- Mode & simulate the concrete slab
- Good mechanical flat reference for better motor and pump:
 - Steel base plate on tope for the motor & pump:
 - Four impulsion independent circuits
- The steel base where the motor is mounted is empty in order to:
 - Booster
 - Experimental Area
 - One single return
 - Motor pump: 75 kW

Issue:
- The reparation periodicity on the motor pump mechanism is to much higher than expected
- As there are two pumps installed on the same slab (the working one and it redundancy) the working one damages the resting one

Design

Option rigidizing the current slab:
- The best solution found the firsts resonance modes are at 63 and 70 Hz. With cross reinforcing steel beams.

Splitting in two independent slabs and optimizing:
- Due the pipes routing installation configuration it is not possible to increase the total height of the slab
- The steel base where the motor is mounted is empty in order to optimize the behavior in the FEA this frame is fill it up meshing with steel

Proposed Design
- 1. Split the slab in two independent one for each pumping group
- 2. The slab is composed by:
 - Concrete: Silentflex 2,5 Hz
 - Steel base plate on top for the motor & pump:
 - Booster
 - Experimental Area
 - One single return

Concrete:
- Perimeter Steel frame: 20x20x Ø16
- Concrete-steel gluing: 55mm thick
- Lluis Ribó, Joan Casas
- Steel plate: 60mm thick

Construction & tests

Proposed design simulations:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Simulated [Hz]</th>
<th>Measured [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0</td>
<td>4</td>
<td>8,45</td>
</tr>
<tr>
<td>f_1</td>
<td>55,1</td>
<td>59,92</td>
</tr>
<tr>
<td>f_2</td>
<td>55,8</td>
<td>74,25</td>
</tr>
<tr>
<td>f_3</td>
<td>127,5</td>
<td>125,1</td>
</tr>
<tr>
<td>f_4</td>
<td>128,8</td>
<td>129,1</td>
</tr>
</tbody>
</table>

Excitation scan measurements:
- From 0 to 60 Hz
- 4Hz Excited measurement
- 54Hz Excited measurement

Conclusions:
- The slabs must be designed as thick as possible.
- The dimensions of the slab must be as close as possible as the motor-pump system dimensions
- A single pump per slab bench: no multipumps slabs

www.cells.es