Design Developments and Innovations for the I08 SXM Beamline

MEDSI 2014
Dr Jon Kelly
Talk Outline

- Introduction to the I08 Beamline
- Bellows Vibration Transmission
- Steel Frame Stability
- Endstation Stability
- Conclusion
I08-SXM: Refocusing scheme

- Source focused on to 10 µm slit
- 10 µm secondary source focused to 20 nm on sample
- Pitch stability of mirrors is critical
- Relative position of slit, zoneplate & sample critical

- 250 – 4200 eV
- Up to 10^{10} ph/s in 20nm spot
- Raster-scanned sample

MEDSI 2014 Dr Jon Kelly
Bellows Vibration Transmission

Vibration from frames can conduct to sensitive optics
Bellows Vibration Transmission

I23 Optics Hutch: Seismometers on DCM

- Tap DCM Vessel
- Tap GBC3 Vessel
- Tap GBC2 Vessel: Longer bellows

MEDSI 2014 Dr Jon Kelly
Steel Frame Stability

How to minimise frame resonance
Steel Frame Stability

An ANSYS modal analysis performed to find expected resonant modes
Steel Frame Stability

- ANSYS predicts fundamental modes at 36.2 Hz & 36.5Hz
- Measured modes at 34 Hz and 36 Hz
- Horizontal motion amplification factor of ~ 1.8
Steel Frame Stability

- Test metric: Time taken for amplitude to drop to ¼ of maximum

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Configuration</th>
<th>¾ Decay Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Original fabricated frame no extra plates</td>
<td>3.5 s</td>
</tr>
<tr>
<td>2</td>
<td>Bolted frame of similar dimensions no side plates</td>
<td>4.0 s</td>
</tr>
<tr>
<td>3</td>
<td>Frame with 2 side plates lightly clamped top & bottom</td>
<td>0.8 s</td>
</tr>
<tr>
<td>4</td>
<td>Frame with 2 side plates firmly clamped top & bottom</td>
<td>0.75 s</td>
</tr>
<tr>
<td>5</td>
<td>Frame with 2 side plates firmly clamped top & lightly clamped bottom</td>
<td>0.45 s</td>
</tr>
<tr>
<td>6</td>
<td>Double sided tape 4 x 25 mm² under bottom tight clamps</td>
<td>0.15 s</td>
</tr>
<tr>
<td>7</td>
<td>2 Layers of double sided tape over 4 x 25 mm² area</td>
<td>0.075 s</td>
</tr>
<tr>
<td>8</td>
<td>Roush® RA954-2mil Damping Adhesive 4 x 50mm x 80mm</td>
<td>0.12 s</td>
</tr>
</tbody>
</table>

- Firmly clamped side plates raise resonant frequency
- Constrained layer damping:
 - reduces decay time by factor of ~50
 - reduces amplification factor to 1.1
Conclusion

• Double sided tape borrowed from the technician’s tool box offers a massive stability improvement for fabricated frames
• Viscoelastic damping fitted to all I08 frames
Granite Endstation Support

Support for
20nm resolution microscope
with 3m translation
I08 End station

End station on moving granite

Cable chain & drive train

Exit slit/Secondary source

Wedges

Airpads

Static, 4.5m base granite

Exit slit granite
Granite Endstation Support

Practice installation & stability check
- Granite blocks surveyed on to 14 wedges
- Surprisingly low vertical resonance at 62Hz & 83Hz

Granite tapped to highlight resonant modes

Sensors located in middle of granite
Granite Endstation Support

ANSYS model suggests 3 point support: 2 under slit & 1 under middle of base slab
- Confirmed by laser tracker data
- Confirmed by feel of wedge screws

Explanation: Displacement of grease over time
Solution: Remove grease from wedges & double check survey after installation
Granite Endstation Support—Fully Installed

Fully Installed Endstation Performance

- Base granite clamped directly to concrete
- Moving granite clamped to base granite
- Microscope stability:
 - 50nm Pk-Pk integrated over 1-500Hz
 - 10nm Pk-Pk integrated over 25-500Hz
 - 6nm Pk-Pk integrated over 40-500Hz
Granite Endstation Support-Fully Installed

Pallet truck effect
• Concreate slab conducts vibration from > 10m away
• Support has a 60Hz resonance due to wedge stiffness
Result: Secondary Source - ZP – Sample miss-aligned rendering microscope unusable

Brown=Granite V, Blue=Granite H, Cyan=floor V, Pink=floor H
Granite Endstation Support

Vibration Isolation Investigation
• Can not isolate whole base granite due to moving mass
• Can only isolate moving granite
• Test various Sorbothane® and Farrat elastomers
• Test microscope while floating on airpads
Result: Isolation not effective
Conclusion: The cables & pipes require an energy chain guide, but this effectively shorts the microscope to ground
Granite Endstation Support

Possible mitigating actions for vibration sensitivity
• Repeat corrupted data sets as required
• Take data over night
• Schedule users around significant construction
• Change technician working practice
• Upgrade granite clamping to raise resonant frequency
• Upgrade support design to include active damping

Ptychographic reconstruction of a mouse fibroblast
Conclusion

- Bellows transmit more vibration than you might think
- Double-sided sticky tape is ideal for improving steel frames
- Wedges are not as stiff as you might think
- Pallet trucks are the enemy