Hall probe bench prototype
for closed magnetic structures

ALBA Synchrotron Light Source,
Engineering division, Transversal section

Llibert Ribo, Carles Colldelram, Liudmila Nilkitina, Pep Campmany
Summary

• Requirements
• Concept
• Validation
• Prototype Specifications
• Conceptual design: and dimensions
• Materialization and Description
• FEA
• Mounting
• Results
Requirements

- Upgrade to the ID lab to measure closed magnetic structures
- Long longitudinal Measuring ranges (up to 3 m)
- Vertical and transversal direction scans
- Small Guidance error on positioning the hall sensor (order of 0.05 mm)
- Very small angular deviations (order of 0.05 mrad)
concept

- Hall sensor attached on a string tensioned on a C shaped arc structure
- The string is passing through the closed magnetic structure
- The arc is moved by an accurate positioner

Simple Idea

![Diagram of the concept](image)

Arc length 2L

Length needed for the measurement 3L

THIS CAN WORK??...

- We are able to materialize that arc and move it with a positioner of a precision level of a machining tool
- We will need a lot of space and we have it
- Is a string stable enough once it is tensioned?
Validation

The Vibrating string

A string under tension has a mode of vibration on the first harmonic which frequency depends on the **vibrating length**, the **tension** and the **linear mass**.

\[f = \frac{1}{2L} \sqrt{\frac{T}{\mu}} \]

When this is excited, will have direct impact on the positioning accuracy of the hall sensor.

Calculation of the 1st harmonic vibration

- L ≈ 4000 mm
- Area 24x1,4 mm²
- Material Pultruded carbon fiber d=1600 Kg/m³
- Elastic limit 2800 Mpa

\[T = 7,5kN \rightarrow f = 55 \text{ Hz} \rightarrow \text{stress} = 223 \text{ Mpa} \]

At ALBA environmental low frequencies are considered under 30 Hz. This value is taken as a reference when designing in a safe margin.
Validation

- Evaluate fundamental frequency modes of a tensioned strip of the same section calculated previously
- Inducing external excitation for amplification checking
- Very simple exercise to confirm the analytical values of the frequencies and the amplitude
Specification and parts

Ranges.

\[X : \pm 125 \text{ mm} \]
\[Z : \pm 50 \text{ mm} \]
\[Y : 1200 \text{ mm} \]

Chamber allowance (“stay clear” area) = 600 mm

Longitudinal POSITIONING ERROR

\[dX, dY, dZ < 0.05 \text{ mm} \]

Angular POSITIONING ERROR

Roll \(d\alpha \), Pitch \(d\beta \) < 0.05 mrad

Yaw \(d\phi \) < 0.1 mrad

Repeatability

\[X, Y, Z \leq 0.03 \text{ mm} \]

Speed

\[Y \sim 15 \text{ mm/s} \]
Dimensions

Side View

- 2600
- 1400
- 650
- 650
- 4300

Top View

- 1445(+125)
- 600

Llibert Ribó i Mor
Hall probe bench prototype
22/10/2014
Materialization: arc structure

Strip dimensioning

- Area 16x1.4 mm²
- Vibrating length 2600 mm
- \(d = 1600 \text{ Kg/m³} \)
- Tensioning force 0.5 TN

Results

- Stress = 223 Mpa
- Security factor = 13
- \(f_1 = 71 \text{ Hz} \)
- Elongation \(\sim 4 \text{ mm} \)

Arc structure

- Aluminium profile structure
- Two tensioning blocks one with stretching gauge
- Mass around 400 Kg
Z stage

- Double flexure system on a granite block
- Compact design: with a single step Z&pitch
- Allows Z range of 100 mm and tilt about 0.2º
- Flexures on high modulus material
- Preloaded guiding system and grinded spindles
- Movement for each flexure is encoded
- Mass of that assembly around 1.2 Tn
XY stage

• X stage: 2 actuators are implemented to avoid rotation on the vertical axis due to the long beam.
• Y stage: Measurement axis: All mounted on a granite block.
• Preloaded roller and matched guides.
• Separation between those guides affect on the vertical accuracy.
• Mass of the XY stage 5 Tn.
FEA calculation

F = 1000 Kg

Max = 0.94 mm

Max = 53 MPa

F = 1000 Kg

32 Hz

Max = 134 MPa

42.5 Hz

Max = 134 MPa
Mounting

XY stage

- Verification of the components with alignment and metrology group

- Big granite block is aligned flat on respect to the floor.

- Interface plate fitted in top. Checking the slots where the transversal guides are. Grinding was corrected several times

- Very accurate alignment of the sets of linear guides
Mounting II

- Hollowed granite block is located on top of the XY stage
- The assembly is stopped to test the motors and perform some measurements to test the actuator
Mounting III

Arc structure

- Stretching system
- Carbon fiber is cutted by water
- The assembly is stopped to test the motors and perform some measurements to test the actuator
- C structure and stretching system are mounted in parallel
- Carbon fiber is tensioned up to 1Tn
Results: Y Scan

LONGITUDINAL MOVEMENT – Measure of the straightness at 1200 mm scan (+ direction)

LONGITUDINAL MOVEMENT – Measure of the straightness at 1200 mm scan (- direction)
Results: Z Scan

VERTICAL MOVEMENT – Measurement of straightness 100 mm
(+ direction)

VERTICAL MOVEMENT – Measurement of straightness 100 mm
(- direction)
Angle evolution

ROLL EVOLUTION MOVING ALONG Y AXIS
Vibration static

![Graph showing vibration static analysis]

Llibert Ribó i Mor

Hall probe bench prototype

22/10/2014
Vibration on movement

Graph showing vibration spectrum with data from different channels. The graph indicates frequencies and their corresponding amplitudes.
Next steps and Conclusions

• Finish the measurements (X scans and repeatability) and prepare a performance report for the ID group is needed to inform the magnetic measurement group.

• Hall sensor integration and first measurements with a calibration magnet

Conclusions

• Specifications are almost guaranteed

• It can work for very narrow gap closed structures up to open conventional dipoles

• That solution tooks a big space for the operation range

• If this short prototype succeed, a 3 m range bench can be considered using this concept
THANKS
David Calderón and Karim Maimouni
Jose Ferrer
Xevi Serra, Toni Camps and Fulvio Becheri
Liudmila Nikitina
Marta Llonch and Jon Ladrera
Carles Colldelram

Thanks to all of you for your attention