Mechanical Stability for New Generation Light Sources

June-Rong Chen

National Synchrotron Radiation Research Center, Hsinchu, Taiwan
and
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan

MEDSI’14, Melbourne, Oct 20, 2014
Outline

I. Introduction
II. Mechanical Effects on Beam Orbit and Beam Size
III. Thermo-Mechanical Effects
IV. The Mag-Girder Assembly
V. Summary
I. Introduction

New Generation Light Sources
Emittance vs. Circumference

1990’s upgrade + 2000’s (1.3 – 3 GeV)
SESAME(26)/SPEAR3(18)
CLS(18)/PLS(12)/TLS(25)

2000’s (~3 GeV)
ELETTRA
ASP
SLS
SOLEIL
CELLS
SSRF
DIAMOND

2010’s (3 GeV)
TPS
NSLS-II (with damping wiggler)

1990’s (6-8 GeV)
ESRF (6 GeV)
SPRING-8 (8 GeV)
APS (7 GeV)

Emittance vs. Circumference

\[\epsilon = C \frac{E^2}{N^3} \]

(status @ 2006)
Ring Horizontal Emittance vs Ring Energy

Diffraction Limit @1Å
\[\varepsilon \sim \frac{\lambda}{4\pi} \sim 8 \text{ pm} \]

2007 - 2015
Construction

Design
2015 – 2020(?)

Ring Name (Circumference in km)

NSLS-II (0.79)
TPS (0.52)
NSLSIIDW (0.79)
MAX4 (0.53)
SIRIUS (0.52)

PETRA3 (2.3)
ILCDR (3.2)
USRLS (2.0)
ESRF – II (0.84)
SPRING6H (1.4)
XRS7 (1.1)
PEPXU (2.2)
USR7 (3.2)

NSL-II (0.79)
TPS (0.52)

U.S. DEPARTMENT OF
Office of
Energy
Science

(James B. Murphy)
Brightness and Coherence of Future Rings

M. Borland for BESAC Meeting, July 2013

DLSR Designs
- Competitive pressure drives optimization
- Upgrades & greenfield facilities possible
- 2-3 orders of magnitude improved brightness over existing rings

DLSR Science complements FELs, offering
- Similar high transverse coherence
- Long pulses with high repetition rate
- High average / low peak power
- High stability
- High capacity

Legend:
- 0.2km/2GeV: ALS-II, 52 pm
- 0.8km/3GeV: NSLS-III, 30 pm
- 1.1km/6GeV: APS-II, 80 pm
- 2.2km/6GeV: PEP-X, 5 pm
- 6.2km/9GeV: tauUSR, 3 pm
Ave Brightness: SASE FELs & Upgraded Rings

Average Brightness (ph/s/mm²/mrad²/0.1%BW)

Photon Energy (keV)

NGLS FEL1 Seeded
EU XFEL 1, 2
EU XFEL 3
NGLS FEL 3 Seeded
FLASH
NGLS FEL1
Chirp SASE
LCLS2 SXR
LCLS2 HXR
1CLS1
SACLX
SACLA
Spring8
ESRF
MAX4
NSLS2
APS
SSRL
MAX1.5
SWISSFEL
ALS
Fermi 2
FLS
NGLS FEL1
Seeded
EU XFEL 1, 2
EU XFEL 3
NGLS FEL 3 Seeded
FLASH
NGLS FEL1
Chirp SASE
LCLS2 SXR
LCLS2 HXR
1CLS1
SACLX
SACLA
Spring8
ESRF
MAX4
NSLS2
APS
SSRL
MAX1.5
SWISSFEL
ALS
Fermi 2
FLASH
NGLS FEL1
Chirp SASE
LCLS2 SXR
LCLS2 HXR
1CLS1
SACLX
SACLA
Spring8
ESRF
MAX4
NSLS2
APS
SSRL
MAX1.5
SWISSFEL
ALS
Fermi 2
NetBright: SASE FELs & Upgraded Rings

M. Borland
R. Hettel
Feb 2013
Brief Summary

(New Generation Light Sources)

1. Two major types
 -- x-ray FEL (long Linac + multi-Undulators)
 -- storage rings \(1 \leq \varepsilon \leq 10 \text{ nm-rad}, \text{DBA/TBA}\)
 \(\varepsilon \ll 1 \text{ nm-rad}, \text{MBA}\)

2. Features
 -- small beam size
 -- small beam divergence
 -- (with small gap undulators/ coherent light)
 -- highly stable “pointing” beam (beam based alignment)
 (APS Goal)

<table>
<thead>
<tr>
<th></th>
<th>AC rms Motion, 0.01-200 Hz</th>
<th>Long-term drift (One Week)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\mu m) rms (\mu rad) rms</td>
<td>(\mu m) rms (\mu rad) rms</td>
</tr>
<tr>
<td>Horizontal</td>
<td>Present Upgrade</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Vertical</td>
<td>Present Upgrade</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>1.0</td>
</tr>
</tbody>
</table>
I. Introduction

Beam Stability Requirement
Basic concept of photon beam stability.
Basic concept of photon beam stability.

\[\frac{\Delta I}{I} \]

photon beam fluctuation

\[
\begin{align*}
\text{photon intensity} & \quad \text{time} \\
\end{align*}
\]
Beam Stability at Apertures

Intensity variations for beam with Gaussian size σ due to position motion dy from the center and beam size change $d\sigma$ for various sized apertures.
Stability Requirement on Beam Orbit and Size

Intensity fluctuation after aperture: $< 0.1\%$
(some experiments require $< 0.01\%$)

- Beam orbit fluctuation $< 5\%$ beam size
- Beam size fluctuation $\sim 0.15\%$ beam size

(Gaussian beam size)
(half aperture $= 1 \times$ beam size)
Technology Challenges to Beam Stability

- Mechanical Challenges
 - Thermal Effect
 - Vibration Effect
 - Beam Effect

Frequency (Hz):
- yr 10^{-9}
- day 10^{-6}
- hr 10^{-3}
- min 1 Hz
- sec 10^3 kHz
- ms 10^6 MHz
- GHz 10^9

- Ground Settlement
- SR users’ most concern

A) Precision position
 1. Fine alignment
 2. Stable temperature

B) Low vibration
 - Smooth beam duct

C) Low gas/ion effect
 - Stable and low electrical noise

D) Mechanical Challenges
 (for Low Emittance)
Brief Summary

(Beam Stability Requirement)

1. Mechanical issues, such as alignment, thermo-mechanical effects, vibration, smoothness of the beam duct, etc., are critical factors to the beam stability.

2. Stability requirements
 - A stability of a photon beam intensity fluctuation, $\Delta I / I < 0.1\%$, is usually requested by most of the users.
 - A beam size variation of 10% (or 5%) is normally set as the basic requirement to the beam stability of $\Delta I / I < 0.1\%$.

II. Mechanical Effects on Beam Orbit and Beam Size

The Mechanical Effects on Beam Stability
Mechanical Effect on Beam Orbit and Size

Beam Orbit Distortion, Emittance/Size Blowup

I. Ground
- Ground Vibration

II. Pedestal
- Coolant Vibration

III. Girder
- Heat (Air/Water)

IV. Magnet/BPM etc.
- Ground Vibration

Displacement amplified
Amplification Factors (AF)

Beam Orbit Fluctuation, Emittance Blowup

I. Ground

II. Pedestal

III. Girder

IV. Magnet/BPM etc.

AF-b: (10 ~ 50 x)

AF-a: (1~1.2 x)

*TPS Amp. Factor, AF-b = 54.5/40.3 in x/y rms with girder grouping ⇒ 30.6/8.0 in x/y rms

** Better alignment ⇒ Lower amp. factor
The rms closed orbit distortion $\sigma_{co}(s)$ at an azimuthal position s is

$$\sigma_{co}(s) = \frac{\sqrt{\beta(s)} \sqrt{\langle \beta \rangle} \sigma_q}{2 \sin \pi \nu} \frac{1}{|F|} \sqrt{N}$$

with betatron tune ν, focal length F, uncorrelated transverse rms quadrupole misalignment σ_q, and number N of identical FODO cells. The average $\langle \beta \rangle$ is taken at the quadrupoles.

(σ_q could be the displacement of the quadrupoles due to vibration or thermo-mechanical effects.)

(A. Chao and M Tigner, “Handbook of Accelerator Physics and Engineering”, 1999.)
Orbit Distortion (conti.)
(storage ring)

\[\sigma_{co}(s) = \frac{\sqrt{\beta(s)} \sqrt{\langle \beta \rangle}}{2 \sin \pi \nu} \frac{\sigma_q}{|F|} \sqrt{N} \]

\[\sigma_{co}(s) \propto \sqrt{N} \text{ (The more the number of quadrupoles, the larger the beam orbit distortion.)} \]

\[\sigma_{co}(s) = K \sigma_q \text{ (Ver. amp. factor, } K \approx 40/8, \text{ w/wo girder grouping, for TPS)} \]

(A. Chao and M Tigner, “Handbook of Accelerator Physics and Engineering”, 1999.)
Beam Displacement (Linac)

The rms beam displacement σ_z at the end of a linac due to random misalignment of all Nq quadrupoles (focal length f) is

$$
\sigma_z^2 = \sum_{Nq} \frac{\gamma_q}{\gamma_{end}} \overline{\beta} \beta_{end} \frac{1}{2} \frac{\sigma_q^2}{f^2}
$$

with $\overline{\beta}$ the β-function averaged over a FODO cell. β is the energy factor.

(A. Chao and M Tigner, “Handbook of Accelerator Physics and Engineering”, 1999.)
Beam Displacement (conti.) (Linac)

The rms beam jitter at the end of the linac is

$$\sigma_z = \frac{\sigma_q \sqrt{N_q}}{\cos \frac{\mu}{2}}$$

under the assumption of a constant phase advance per FODO cell and $\varpi \propto \varpi^n$. $n < 0.8$

** This beam motion can lead to emittance growth due to wakefield excitation.

(A. Chao and M Tigner, “Handbook of Accelerator Physics and Engineering”, 1999.)
Emittance and Beam Size Blowup
(storage ring)

\[\varepsilon = \gamma(s)x^2 + 2\alpha(s)x' + \beta(s)x'^2 = \text{constant} \]

\[\varepsilon_y \cong k\varepsilon \quad (k = \text{coupling, } k \lesssim 0.1) \]

\[\alpha = -\beta'/2 \quad \gamma = \frac{1+\alpha^2}{\beta} \]

\[\sigma_x(s) = \sqrt{\varepsilon_x \beta_x(s) + (\eta(s)\delta E/E)^2} \quad \sigma_y(s) = \sqrt{\varepsilon_y \beta_y(s)} \]

\[\sigma_{x'}(s) = \sqrt{\varepsilon_x \gamma_x(s) + (\eta'(s)\delta E/E)^2} \quad \sigma_{y'}(s) = \sqrt{\varepsilon_y \gamma_y(s)} \]

Couplings:
H\(\rightarrow\)V: by skew quads, orbit in sextupoles, resonances longitudinal\(\rightarrow\) transverse: \(\Delta x = \eta\Delta E/E, \) scattering etc.

(V. Shiltsev, EPAC 96)
Emittance and Beam Size Blowup (conti.) (storage ring)

Transverse emittance growth due to fast (turn to turn) dipole angular kicks $\delta \theta$ produced by bending field $\Delta B/B$ fluctuations in dipole magnets or by fast motion of quadrupoles σ_q which has a rate of

$$d\varepsilon_N / dt = (1/2)\gamma\langle \beta \rangle N_q f_0^2 S_{\delta \theta} (\Delta v f_0)$$

$$\approx (1/2)\gamma\langle \beta \rangle f_0 N_q (\sigma_q / F)^2$$

$$d\varepsilon_N / dt \sim \sigma_q^2$$

where f_0 is the revolution frequency, Δv is fractal part of tune, $S_{\delta \theta}$ is the PSD of $\delta \theta = \sigma_q / F$.

(V. Shiltsev, EPAC 96)
Interaction of Ground Waves with Beam

Vertical orbit distortion (no amplification in GMA, AF$_a=1$)

$$y_c(t) = \text{Re}\{\frac{\sqrt{\beta_0}}{2\sin\pi\nu_y} \hat{y} e^{i(\omega t + \phi_0)} \times \left[\sum_{n=2}^{2N} \sqrt{\hat{\beta}} e^{i(C/\lambda)\cos(\Phi_n/\nu_y - \theta_w)} \cos(\Phi_n - \pi\nu_y)\right] \}

- \sum_{n=1}^{2N-1} \sqrt{\hat{\beta}} e^{i(C/\lambda)\cos(\Phi_n/\nu_y - \theta_w)} \cos(\Phi_n - \pi\nu_y)\]

where, Φ_n is the vertical betatron phase advance between the observation point and the nth magnet. β_0, $\hat{\beta}$ and $\tilde{\beta}$ are the values of the β-function at observation point, focusing and defocusing quads.

due to a single vertical ground wave with amplitude \hat{y} , phase ϕ_0 , angular frequency $\omega=2\pi f$, velocity ν, wavelength $\lambda=\nu/f$ and direction of incidence θ_w:

$$\Delta y_n(t) = \hat{y} \text{Re}\{e^{i[\omega t + \phi_0 + \frac{C}{\lambda} \cos(\theta_n - \theta_w)]}\}

(A. Chao and M Tigner, “Handbook of Accelerator Physics and Engineering”, 1999.)
Interaction of Ground Waves with Beam (conti.)

Horizontal orbit distortion due to a single vertical ground wave

\[
\Delta x_n(t) = \hat{x} \cos(\theta_n - \theta_w) \times \text{Re}\{e^{i(\omega t + \phi_0 + \frac{C}{\lambda} \cos(\theta_n - \theta_w))}\}
\]

\[
Rx = \frac{\hat{x}_c}{\hat{x}} = \frac{\sqrt{\beta_0}}{2F} \left[\sum_{p=-\infty}^{\infty} J'_4p \left(\frac{C}{\lambda} \right) C_{4p} - J'_{4p-2} \left(\frac{C}{\lambda} \right) C_{4p-2} \right]^2
\]

\[
+ \sum_{p=-\infty}^{\infty} J'_{4p-1} \left(\frac{C}{\lambda} \right) C_{4p-1} - J'_{4p-3} \left(\frac{C}{\lambda} \right) C_{4p-3} \right]^2 \right]^{1/2}
\]

(A. Chao and M Tigner, “Handbook of Accelerator Physics and Engineering”, 1999.)
Interaction of Ground Waves with Beam (conti.)

Factor 1: **Damping** factor of soil and concrete slab

Factor 2: **Amplification** factor (AF-a) of Girder Assembly
(Ground vibration ➔ Pedestal ➔ Girder ➔ Magnet)

Factor 3: COD **Amplification** factor (AF-b)
(Magnet ➔ Beam)

Factor 4: **Attenuation** factors of Fast Feedback System
Interaction of Ground Waves with Beam (conti.)

The characteristic wavelengths of slow ground motions are far greater than betatron wavelength, the dynamic effects to the beam can be neglected.

-- Betatron wavelength
\[\lambda_{by} = \frac{C}{\nu_y} = \frac{518 \text{ m}}{12.2} = 42.4 \text{ m} \]
\[\lambda_{bx} = \frac{C}{\nu_x} = \frac{518 \text{ m}}{26.2} = 19.8 \text{ m} \]

-- Assume \(\nu = 500 \text{ m/s} \) (soft ground)
\[f_\beta = \frac{\nu}{\lambda} \approx 12 \text{ Hz} \quad \text{--- vertical} \]
\[\approx 25 \text{ Hz} \quad \text{--- horizontal} \]
\[\Rightarrow \text{For frequencies} \ll f_\beta, \text{the effects to the beam can be neglected.} \]

-- A threshold frequency was found at ~ 4Hz for TPS lattice. (by simulation)
ESRF

- **Transfer function**
 (ground vibration $d(f) \rightarrow$ e-beam emittance growth $\Delta \epsilon/\epsilon$)

 $$G(f) = \frac{\Delta \epsilon/\epsilon}{d(f)}$$

 \Rightarrow e-beam sensitive to vibrations $f > 4$Hz

"ESRF foundation phase report", 1987
Criteria for Machine Stability

1. Temperature fluctuation criteria (for air and cooling water)
 -- ± 0.1°C, normally (depend on the sensitivity of the device)
 -- ± 0.01°C, for the most sensitive devices
 (e.g. rf system and photon monitors)

2. Ground vibration criteria
 -- beam size × 0.1 / AF-b / AF-a
 = 4.5 mm × 0.1 / 10 / 1
 = 45 nm

 (TPS: 40 nm, equal to the measured value before construction, 4 -100 Hz)
Brief Summary
(The Mechanical Effects on Beam Stability)

1. The ground vibration and the temperature fluctuation, could induce the displacement of magnets, and cause the beam orbit fluctuation and the emittance blow up. Low vibration, stable temperature conditions, and low amplification factors (AF-a and AF-b), are necessary for beam stability.

2. Grouping the magnets to the girders is effective to reduce the amplification factor AF-b.

3. The wavelengths of slow ground motions are far greater than betatron wavelength, the dynamic effects to the beam can be neglected. ($f < 4$ Hz for TPS)
II. Mechanical Effects on Beam Orbit and Beam Size

Heat Source and Vibration Source
Heat Sources and Frequency Domain

1. Four Season: 1y
2. Tunnel warm up (first start up after long shutdown): ~1w
3. Sunshine: 1d
4. Beam current decay (lifetime): ~ 10 hr (none for top-up injection mode)
5. Re-injection (energy ramp-up/down): ~ 1 hr (none for full energy injection mode)
6. Temperature (control) “jitter”: sec ~ min
7. Human body (stay or pass by)
8. Pulsed Equipment (high frequency)
Typical propagation chart from heat sources to the fluctuations in beam orbit and beam size

Sources of Noise

Utility System

Accelerator Components
Vibration Sources and Frequency Domain

A. Natural

1. ATL: \(PSD(f) \sim \frac{1}{f^2} \)
2. Tide: 7 sec (Ocean wave)
3. Moon gravitation force (high/low tide): \(\sim 12 \) hour (long wavelength)
4. Earthquake
5. Wind: 0.03-0.1 Hz, Plane \(\rightarrow \) wind \(\rightarrow \) ground bending (HERA)
6. Long-term noise (BG): \(\frac{1}{f^4} \)
7. Ground settlement (mo – y)

@ ATL law: \(<dX^2> = A*T*L \), relative displacement of two points located at a distance \(L \) grows with time interval \(T \); \(A \): site dependent coefficient, \(\sim 10^{-5\pm1} \mu m^2/s/m \).
Vibration Sources and Frequency Domain (conti.)

B. Traffic

1. **Traffic**: ~ 4 Hz (hump on road), tens Hz (peak at 30Hz, SLS)

C. Facility Equipment

1. Pumps, motors, AHUs: tens Hz (15-70 Hz)
2. **Water vibration**: tens Hz (30-130 Hz)
3. LHe flow: 700-1500Hz (45g/s, SSC)
Ground vibration (A. Seryi, APAC2001)

Power spectrum of absolute ground motion measured at different sites. Smooth curves show modeling spectra. The high noise level at HERA is caused by cultural noise and, supposedly, by resonances of the clay/sandy site itself.
APS circumference changes due to Earth tides over a one-week time period.
The Vibration Sources Surrounding TPS

Main Traffic and Utility Machinery
The Vibration Sources Surrounding TPS

Machinery Vibration Sources

- Power stations (TLS, 120m)
- AHUs (TPS, 518m)
- 39x
- Cooling Towers
- He-Compressor
- Pipings
- Utility Machinery
Vertical Vibration, daily variations at TPS
Cooling Water Vibration at BPM (Horizontal)

Hor. vibration @ S3 BPM

4 - 100 Hz

vibration amplitude

Frequency (Hz)

21.0 nm 18.3 nm
Cooling Water Vibration at BPM (Vertical)

Ver. vibration @ S3 BPM

4 - 100 Hz

18.5 nm 18.2 nm
AHU Vibration
1. A machine is unavoidably surrounded by numerous disturbances of heat and vibration sources, distributed in a wide frequency range.

2. The disturbance sources transfer their energy via complex routes to the fluctuations of the beam orbit and beam size.

3. The thermo-mechanical effects and the vibrations (induced by traffic, the water cooling process, and the air conditioning system) could severely excite the beam instability and/or mislead the control system when the monitors are affected.
Mag-Girder Vibration (TPS)
Vibration Modal Measurements
(TPS girder prototype)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Frequency (Hz) /Vibration mode</th>
<th>(after, locking @100kg-cm)</th>
<th>(before, without locking)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.65 / G_Roll</td>
<td>24.21 / G_Roll</td>
<td>f - increased</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35.31 / G_Yaw</td>
<td>28.70 / G_Z</td>
<td>Z- Disappear</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>39.32 / G_Pitch</td>
<td>30.98 / G_Yaw</td>
<td>f - increased</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>52.86 / Q6_Z</td>
<td>32.87 / G_Pitch</td>
<td>f - increased</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>53.84 / G_Yaw, mag. swing</td>
<td>35.61 / G_Y</td>
<td>Y- Disappear</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>56.02 / G_Yaw, Q6_Z</td>
<td>41.11 / G_Roll, mag. swing</td>
<td>Fix. of M to G</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>56.97 / Q6_Z</td>
<td>44.12 / Q1_X&Z</td>
<td>Fix. of M to G</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>60.06 / Q4_roll, Q6_Z</td>
<td>51.45 / Q4_X&Z</td>
<td>Fix. of M to G</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>62.03 / Q3_Z, Q5_Z, Q6_Z</td>
<td>60.18 / Q5_X&Z, Q6_X&Z</td>
<td>Fix. of M to G</td>
<td></td>
</tr>
</tbody>
</table>
ModelView 1
Mode 1 : 29.65 Hz

ModelView 2
Mode 1 : 29.65 Hz

ModelView 3
Mode 1 : 29.65 Hz
Heavy machinery
• Need dynamically balanced.
• Using dampers
→ ‘residual’ vibrations still transfer through the ground and/or pipelines to perturb devices.
Further suppression along transfer routes
• As far away from sensitive components as practicable
• Using rubber tubes (to cut off the transfer route)
• Appropriate fixture for pipelines

Vibration Suppression (II)

<table>
<thead>
<tr>
<th></th>
<th>Ring floor</th>
<th>R3BPM5X</th>
<th>R3BPM5Y</th>
<th>R5Q5(Ver.)</th>
<th>R6Q5(Ver.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>3.7-20nm</td>
<td>0.22um</td>
<td>0.34um</td>
<td>27nm</td>
<td>24nm</td>
</tr>
<tr>
<td>After</td>
<td>3-12nm</td>
<td>0.1um</td>
<td>0.14um</td>
<td>3.3nm</td>
<td>4.5nm</td>
</tr>
</tbody>
</table>

~4-9 x reduction
• To decrease the rate of water flow,
• to smooth the piping curvature, and
• to fix the vacuum chamber as rigidly as practicable can diminish the vibration of the vacuum chamber.

@ Vibration of vacuum chamber (in the magnets)
→ Eddy current effect
→ electron beam influenced
 [SPring-8: 30 – 50 Hz vertically, 80 – 100 Hz horizontally]
III. Thermo-mechanical Effects

Sources, Routes and Sensitivities of the Thermo-mechanical Effects
Propagation chart from heat sources to the fluctuations in beam orbit and beam size (TLS)

Sources of Noise
- Synchrotron light
- Outdoor temp.
- Machine setting
- AC voltage

Utility System
- CTW / CHW
- Electrical heating
- Air temp. (expt area)
- Air temp. (tunnel)
- Air temp. (core area)
- DIW (BL)
- DIW (VAC)
- DIW (mag, rf, ps)
- CTW / CHW
- Electrical heating

Accelerator Components
- AHUs
- Cable heating
- Photon monitor
- Vacuum chamber
- Operation Technique
- Magnet
- RF System
- PS (magnet)

Feedback System
- e-BPM
- Girder
- Beam orbit / beam size fluctuation
Air Temperature Fluctuation
-- Girder Displacement --

Synchrotron light

Outdoor temp.

Machine setting

AC voltage

CTW / CHW

AHUs

Cable heating

Air temp. (tunnel)

Air temp. (core area)

Air temp. (expt area)

DIW (BL)

DIW (VAC)

DIW (mag, rf, ps)

Photon monitor

Vacuum chamber

e-BPM

Girder

Magnet

RF cavity

PS (magnet)

e-beam & wave

Beam orbit / beam size fluctuation

Monitor reading

Feedback
Girder Displacement

An unstable girder will move all the components on it.
Girder Displacement

- Main cause: air temperature
 - Sensitivity to air temp.: ~10 μm / °C
 - Induced beam orbit drift: 20-100 μm / °C
- Current status: < ± 0.1 μm per 8 hr shift
 - Air temp. : < ± 0.1°C (utility control system improved)
 - Thermal insulator jacket
Synchrotron Light Irradiation
-- Expansion of Vacuum Chamber --

- Synchrotron light
- Outdoor temp.
- Beam energy
- AC voltage
- CTW / CHW
- Electrical heating
- AHUs
- Cable heating
- Air temp. (tunnel)
- Air temp. (core area)
- DIW (BL)
- DIW (VAC)
- DIW (mag, rf, ps)
- Air temp. (expt area)
- Photon monitor
- Vacuum chamber
- e-BPM
- Girder
- Magnet
- RF cavity
- PS (magnet)
- Monitor reading
- Feedback
- Beam orbit / beam size fluctuation
Expansion of Vacuum Chamber

The expanded vacuum chamber moves the components touched or connected to it. The force transferred to the girder.
Expansion of Vacuum Chamber

- Caused by synchrotron light irradiation.
 Sensitivity to water temp.: $\sim 10 \mu m / ^\circ C$
 Move the girder ($\sim 0.3 \mu m/^\circ C$) and BPM ($\sim 1 \mu m/^\circ C$)
 Induced beam orbit drift: $\sim 10-30 \mu m / ^\circ C$

- Current status
 Vacuum cooling water temp.: $< \pm 0.2 ^\circ C$
 (Greatly improved after adopting the Top-up Injection)
Power Supply and Electrical Effect (1)
Power Supply and Electrical Heating (1)

- Transient after injection or shut down
 Heat source: mainly dipole-cables
- Transient time
 ~ 0.5 hr (after injection, insignificant after injector energy increased from 1.3 GeV to 1.5 GeV)
 \[\Delta T: > 0.5 ^\circ C \Rightarrow \Delta T: < 0.2 ^\circ C\]
 ~ 12 hr (after shut down), it’s better not to turn PS off
 \[\Delta T: > 1.5 ^\circ C\]
Power Supply and Electrical Effect (2)
• **Phenomenon**
 AC line voltage ➔ air temperature
 AC line voltage ➔ output of DC-PS
 Sensitivity: ~ 5 μm / °C

• **Current Status**
 Air temperature (core area): ~ ± 0.3°C
 A.C. line voltage fluctuation: ~ ± 1.5%
 (~ ± 0.05% for PS-Q4)

AC Line Voltage
 ➔ Transmitter Water Temp.
 ➔ horizontal beam size

(Beam size): ~ 1 μm/Volt
Magnet (Water Temp.)

Caused by the temperature fluctuations of magnet cooling water
Magnet deformed \(~10\mu m/\degree C\)
Induced beam orbit drift: 5-50 \(\mu m / \degree C\)

Current status
Cooling water temp.: \(~\pm 0.1\degree C\)
Beam Size Fluctuation Induced by RF-Water Temp.

- **Phenomenon**
 - Water temperature \Rightarrow beam size (x)
 - Sensitivity: $\sim 20 \, \mu m/\degree C$ (hor.)

- **Current Status**
 - Water temperature (rf): $< \pm 0.02 \degree C$

Correlation between water temperature ($\pm 0.015 \degree C$) and tuner position of rf system.
Thermo-mechanical Effects on Photon Intensity (pin hole) Monitor (TLS)

(Water temperature fluctuation) (Air temperature fluctuation)

$\Delta T \approx 0.1 ^\circ C$

$\Delta I/I \approx 0.4\%$

$\Delta y \approx 5 \mu m$

$\Delta T \approx 0.5 ^\circ C$

For photon beam monitors, $\Delta I/I < 0.1\% \implies \Delta T \approx 0.01 ^\circ C$
Brief Summary

(Thermo-mechanical Effects)

<table>
<thead>
<tr>
<th>Sources of disturbance</th>
<th>Time constant</th>
<th>Sensitivity to beam stability</th>
<th>Structure influenced</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasonal temp. variation</td>
<td>1 y</td>
<td>Circumference ~3mm/y</td>
<td>Floor</td>
<td>RF frequency regulation</td>
</tr>
<tr>
<td>- Periodical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunnel warming following a long shut down</td>
<td>1w</td>
<td>Floor</td>
<td>Wait (or to maintain tunnel temp. during shut down)</td>
<td></td>
</tr>
<tr>
<td>- Transient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar irradiation (tunnel air temperature variation)</td>
<td>1d</td>
<td>20~100μm/°C</td>
<td>Girder expansion ~10 μm/°C (ver.)</td>
<td>Insulator jacket / air temperature control</td>
</tr>
<tr>
<td>- Periodical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchrotron light irradiation (current decay)</td>
<td>hours</td>
<td>10-30μm/°C (~1 μm/°C to BPM)</td>
<td>Vacuum chamber & BPM displaced ~0.3μm/°C to girder</td>
<td>Top-up injection</td>
</tr>
<tr>
<td>- Transient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-injection with energy ramps (temp redistribution)</td>
<td>~1 h</td>
<td>5-50 μm/°C</td>
<td>Mag.- temp. changed (coil heating) Mag-gap~10μm/°C</td>
<td>Full energy injection</td>
</tr>
<tr>
<td>- Transient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limited capability of the system to control temp.</td>
<td>Minute/seconds</td>
<td>10-30μm/°C</td>
<td>Girder/ vacuum chamber/ magnets/ monitors/RF/PS</td>
<td>Air/water temp. control ± 0.1C rt-RF cavity± 0.01C</td>
</tr>
<tr>
<td>- Periodical & Transient</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical heating (ac voltage fluctuation)</td>
<td>Minute/seconds</td>
<td>Power supply output Air temp fluctuation</td>
<td>Ac regulator or better temp. control</td>
<td></td>
</tr>
<tr>
<td>- Random</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III. Thermo-mechanical Effects

Temperature Stabilization
• **Considerations on Temperature Stability Control**

* Temperature of chilled (& hot) water should be stabilized < ±0.5°C.
* Eliminate the nonlinear effects in valves.
* Use buffer tank to smooth the temperature variation < ±0.01°C.
* High resolution sensor and controller.
* Variable frequency controller
Control Method (PID+PWM+Fuzzy)

- Using cascade control for valve set
 - Easy to optimize operation point of load
 - Solve nonlinear matching between control valve and heat exchanger
 - Solve rangeability problem of control valve

- Small valve controlled by PID+PWM Control
 - Solve rangeability problem of control valve
 - Solve hysteresis problem of control valve

- Large valve controlled by Fuzzy Control
 - Solve control algorithm with multiple feedback
 - Overcome burst variation of load
 - Solve control sequence between small and large valve

(Z.D. Tsai, NSRRC)
Water Temperature Variations after and before the Buffer Tank

(Z.D. Tsai, NSRRC)
Temperature Control for Air

CHW & HTW Temperature Control:
Fluctuation: < ± 0.3°C

Air Temperature Control:
Fluctuation: < ± 0.1°C
Evolution of HVAC System

(Z.D. Tsai, NSRRC)
Round-Around Design

(Z.D. Tsai, NSRRC)
Highly Precise Control of Temperature with Run-around Coils

(Z.D. Tsai, NSRRC)
Girder with thermal insulation.
Transient time constant \(\rightarrow\) Longer (smoothing effect)
Air Flow Uniformity Control
1. Delicate technologies have been developed to stabilize the air- and water- temperature fluctuation. A temperature fluctuation of $< \pm 0.1^\circ\text{C}$ can be routinely achieved in several labs.

2. Thermal stability improves not only the beam stability but also the system reliability.

3. The technologies for a stability of $\pm 0.01^\circ\text{C}$, which will be beneficial to the new machines, are almost matured.
IV. Mag-Girder Assembly
IV. Mag-Girder Assembly
OR
IV. Mag-Girder Assembly
Girder Developments

- 1st natural to higher frequency

by a factor of 6
Mag-Girder Assembly
(basic concept)

1. Good mechanical behavior. (Stiff + damping property)
 Structure amplification factor AF-a =1. Natural frequency
 >30 Hz (or 50 Hz).
 (or adaptive vibration suppression AF-a < 1).

2. Girder as an optical table.
 (with reference surfaces for component alignment)

3. Adjustable: 6 degree of freedom without over-constraint.
 (beam-bsaed alignment)

 (vibrating wire for the magnets on the same girder)

5. Compensation to the ground settlement.
Alignment and Stability Requirements

Alignment purpose ➔ Small COD (within aperture)
 ➔ 100μm (30μm/ on girder)

Stability purpose ➔ Stable photon beam intensity
 (fluctuation <0.1%)
 ➔ ~ 0.2 μm (0.05 ~ 0.1σ_y) on magnet
 ➔ ~ 0.2 μm ground vibration
 ➔ Structure Amplification Factor
 \(AF-a = 1 \)

\[
AF_b = \frac{\Delta x_{rms}}{\Delta q_{rms}}
\]

\[
AF_b = \frac{\sqrt{\beta_{obs}}}{2\sqrt{2 \sin \pi v}} \sqrt{\sum_i \beta_i (Kl_i)^2}
\]

\(\Delta x_{rms} \) – beam displacement
\(\Delta q_{rms} \) – quadrupole displacement
Whether the mechanical center of a magnet is the same as the magnetic field center is always in doubt. → Vibrating Wire

The positioning error for quadrupoles and sextupoles: ~ 5 μm.
Aligning the magnets on the same girder

Magnets are fixed to the girder by matching the pre-machined reference surfaces at both the bottom of the magnets and the top of the girder.

References surfaces: SLS, DLS, Soleil, TPS, etc.

Side C/D (Ver.)

24μm

Amp. factor without girder = 54.5/40.3 in x/y rms
Amp. factor with girder = 30.6/8.0 in x/y rms

(5 m long girder : model view)

HLS (3 sensors per girder)
Girder to Girder Alignment

Touch Sensors & Leveling
Micron resolution

For two girders at opposite sites of a long straight section
→ laser-based alignment system

HLS: SLS, DLS, Soleil,, etc.
TPS: electronics leveling + touch sensors
V. Summary

• Essentials for the new generation light sources:

@ A precise-adjustable girder less sensitive to the perturbations.

@ Fine positioning
 a) precisely positioning the major components,
 b) protecting the position of major components from perturbation,

@ Temperature stabilization
 a) stabilizing the sources of heat,
 b) decreasing the sensitivity in each route of transfer from the heat source to the fluctuation of the electron beam,

@ Vibration suppression
 a) stabilizing the sources of vibration,
 b) suppressing vibrations along the transfer route from a source to a sensitive device of the light source,
Thank you for your attention.